首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The role of protein kinase C (PKC) in the induction of nitric oxide (NO) synthesis in murine peritoneal macrophages was examined. Phorbol ester, a PKC activator, had no effect on NO synthesis by itself, whereas IFN-gamma alone had modest activity. When phorbol ester was used in combination with IFN-gamma, there was a marked cooperative induction of NO synthesis in a dose-dependent manner. This increase in NO synthesis was reflected as increased amount of inducible NO synthase (iNOS) mRNA, as determined by Northern blotting. The optimal effect of phorbol ester was shown at 6 h after treatment with IFN-gamma. Phorbol ester also induced the release of NO to the incubation medium by bacillus Calmette-Guerin-infected peritoneal macrophages. Prolonged incubation of cells with phorbol ester, which down-regulates PKC activity, abolished the synergistic cooperative effect on NO production with IFN-gamma. In addition, such PKC inhibitors as staurosporin or polymyxin B reduced NO production induced by IFN-gamma plus phorbol ester. When the cells were treated with both actinomycin D and phorbol ester after IFN-gamma stimulation, more NO was produced and more iNOS mRNA was expressed than in the cells treated with actinomycin D alone. On the basis of these observations, we conclude that PKC might not be directly involved in the expression of NO synthase, but, instead, might be involved in the stabilization of the iNOS mRNA already expressed by the treatment of IFN-gamma.  相似文献   

4.
5.
The signaling pathway involved in protein kinase C (PKC) activation and role of PKC isoforms in lipopolysaccharide (LPS)-induced nitric oxide (NO) release were studied in primary cerebellar astrocytes. LPS caused a dose- and time-dependent increase in NO release and inducible NO synthase (iNOS) expression. The tyrosine kinase inhibitor, genestein, the phosphatidylcholine-phospholipase C inhibitor, D609, and the phosphatidate phosphodrolase inhibitor, propranolol, attenuated the LPS effects, whereas the PI-PLC inhibitor, U73122, had no effect. The PKC inhibitors (staurosporine, Ro 31-8220, Go 6976, and calphostin C) also inhibited LPS-induced NO release and iNOS expression. However, long term (24 h) pretreatment of cells with 12-O-tetradecanoyl phorbol-13-acetate (TPA) did not affect the LPS response. Previous results have shown that TPA-induced translocation, but not down-regulation, of PKCeta occurs in astrocytes (Chen, C. C., and Chen, W. C. (1996) Glia 17, 63-71), suggesting possible involvement of PKCeta in LPS-mediated effects. Treatment with antisense oligonucleotides for PKCeta or delta, another isoform abundantly expressed in astrocytes, demonstrated the involvement of PKCeta, but not delta, in LPS-mediated effects. Stimulation of cells for 1 h with LPS caused activation of nuclear factor (NF)-kB in the nuclei as detected by the formation of a NF-kB-specific DNA-protein complex; this effect was inhibited by genestein, D609, propranolol, or Ro 31-8220 or by PKCeta antisense oligonucleotides, but not by long term TPA treatment. These data suggest that in astrocytes, LPS might activate phosphatidylcholine-phospholipase C and phosphatidylcholine-phospholipase D through an upstream protein tyrosine kinase to induce PKC activation. Of the PKC isoforms present in these cells, only activation of PKCeta by LPS resulted in the stimulation of NF-kB-specific DNA-protein binding and then initiated the iNOS expression and NO release. This is further evidence demonstrating that different members of the PKC family within a single cell are involved in specific physiological responses.  相似文献   

6.
7.
8.
The signaling pathway for protein kinase C (PKC) activation and the role of PKC isoforms in LPS-induced nitric oxide (NO) release were studied in RAW 264.7 macrophages. The tyrosine kinase inhibitor genestein attenuated LPS-induced NO release and inducible nitric oxide synthase (iNOS) expression, as did the phosphoinositide-specific phospholipase C (PI-PLC) inhibitor U73122 and the phosphatidylcholine-specific phospholipase C (PC-PLC) inhibitor D609. LPS stimulated phosphatidylinositol (PI) hydrolysis and PKC activity in RAW cells; both were inhibited by genestein. The PKC inhibitors (staurosporine, calphostin C, Ro 31-8220, or Go 6976) or long-term 12-O-tetradecanoylphorbol 13-acetate (TPA) treatment also resulted in inhibition of LPS-induced NO release and iNOS expression. Western blot analysis showed expression of PKC-alpha, -betaI, -delta, -eta, and -zeta in RAW cells; down-regulation of PKC-alpha, -betaI, and -delta, but not -eta, was seen after long-term TPA treatment, indicating the possible involvement of one or all of PKC-alpha, -betaI, and -delta, but not -eta, in LPS-mediated effects. Treatment with antisense oligonucleotides for these isoforms further demonstrated the involvement of PKC-alpha, -betaI, and delta, but not -eta, in LPS responses. Stimulation of cells with LPS for 1 h caused activation of NF-kappaB in the nuclei by detection of NF-kappaB-specific DNA-protein binding; this was inhibited by genestein, U73122, D609, calphostin C, or antisense oligonucleotides for PKC-alpha, -betaI, and -delta, but not -eta. These data suggest that LPS activates PI-PLC and PC-PLC via an upstream tyrosine kinase to induce PKC activation, resulting in the stimulation of NF-kappaB DNA-protein binding, then initiated the expression of iNOS and NO release. PKC isoforms alpha, betaI, and delta were shown to be involved in the regulation of these LPS-induced events.  相似文献   

9.
10.
We investigated nitric oxide (NO) production and the presence of nitric oxide synthase (NOS) in the mammary gland by use of an organ culture system of rat mammary glands. Mammary glands were excised from the inguinal parts of female Wistar-MS rats primed by implantation with pellets of 17beta-estradiol and progesterone and were diced into approximately 3-mm cubes. Three of these cubes were cultured with 2 ml of 10% FCS/DMEM plus carboxy-PTIO (an NO scavenger, 100 microM) in the presence or absence of LPS (0.5 microgram/ml) for 2 days. The amount of NO produced spontaneously by the cultured mammary glands was relatively minute at the end of the 2-day culture period, and the NO production was significantly enhanced by the presence of LPS. This enhancement of NO production was completely eliminated by addition of hydrocortisone (3 microM), an inhibitor of inducible NOS (iNOS), to the incubation medium. Immunoblot analyses with specific antisera against NOS isoforms such as iNOS, endothelial NOS (eNOS), and brain NOS (bNOS) showed immunoreactive bands of iNOS (122 +/- 2 kD) and eNOS (152 +/- 3 kD) in extracts prepared from the mammary glands in the culture without LPS. The immunoreactive band of iNOS was highly intense after the treatment of mammary glands with LPS, whereas the corresponding eNOS immunoreactive band was faded. The immunohistochemical study of anti-iNOS antiserum on frozen sections of the cultured mammary glands showed that an immunoreactive substance with the antiserum was localized to the basal layer (composed of myoepithelial cells of alveoli and lactiferous ducts) of the mammary epithelia and to the endothelium of blood vessels that penetrated into the interstitium of the mammary glands. Histochemical staining for NADPH-diaphorase activity, which is identical to NOS, showed localization similar to that of iNOS in the mammary glands. Similar observations were noted in the immunohistochemistry of eNOS. In contrast, the immunoreactive signal with the bNOS antiserum was barely detected in the epithelial parts of alveoli and lactiferous ducts of the mammary glands. These observations demonstrate that three isoforms of NOS are present not only in the endothelium of blood vessels but also in the parenchymal cells (the glandular epithelium) of the rat mammary gland, such as epithelial cells and myoepithelial cells, and suggest that NO may have functional roles in the physiology of the mammary glands.  相似文献   

11.
1. A transient two fold increase in the cyclic GMP content was observed in rat freshly isolated glomeruli 6 to 9 h after a single subcutaneous injection of 20 mg kg-1 cyclosporine A (CsA) in conscious animals. 2.In vitro stimulation with endothelin 3 (ET-3) of isolated glomeruli obtained from CsA-untreated rats resulted in a dose-dependent increase in cyclic GMP content. The increase observed with 10 nM ET-3 was similar to that observed in glomeruli isolated 9 h after in vivo CsA administration. 3. The rise in glomerular cyclic GMP content after in vivo CsA injection was prevented by in vivo treatment with L-NAME (10 mg kg-1) or by in vitro calcium deprivation of the incubation medium. 4. The stimulating effects of CsA on glomerular cyclic GMP content were inhibited by in vivo administration of the ETB receptor antagonist BQ-788 (2 mg kg-1) but not by the ETA receptor antagonist BQ-123 (2 mg kg-1). 5. The maximum increase in glomerular cyclic GMP content induced in vitro by acetylcholine (100 microM) and by ET-3 (100 nM) was slightly lower (approximately by 20-25%; P < 0.05) in glomeruli from CsA-treated rats than in glomeruli from untreated rats. In contrast, the maximum increase achieved with 1 microM sodium nitroprusside was similar in both groups. 6. A single subcutaneous injection of CsA did not significantly alter the glomerular mRNA expression of constitutive endothelial NO synthase (eNOS), as evaluated by RT-PCR, whereas the mRNA expression of the inducible NO synthase (iNOS), which follows pretreatment with lipopolysaccharide, was prevented. 7. These results indicate that in vivo administration of a single dose of cyclosporine A transiently increases the cyclic GMP content of freshly isolated glomeruli, and that activation of ETB receptors and stimulation of the NO pathway are involved in this process. Furthermore, a single administration of CsA does not impair eNOS mRNA expression and only slightly reduces NO-dependent glomerular cyclic GMP production.  相似文献   

12.
13.
Protein A of S. aureus exhibits a wide array of immunopotentiating activities. Since the role of nitric oxide (NO) in bioregulation has been well envisaged; we studied the effect of Protein A on NO production by immunocytes both in vivo and in vitro. Our data indicate that PA at a comparable dose of LPS (lipopolysaccharide) increases the NO levels in the serum of Swiss albino mice by about 12-fold from its basal level. The peak level is reached at about 12 hours after i.p. inoculation of PA. However, NO concentration returns to the basal value 15 hours posttreatment. Splenic lymphocytes and peritoneal macrophages showed appreciable increase in NO production when cultured with PA in vitro. Interestingly, inhibitors of tyrosine kinase, phospholipase C, and protein kinase C (PKC) inhibited NO production in splenic lymphocytes. Thus, it appears that these enzymes participate in the signaling cascade induced by PA, which culminates in the production of NO downstream of PKC. It is possible that PA-induced NO production may have relevance with the anti-tumor and anti-parasitic properties of PA, described earlier.  相似文献   

14.
15.
16.
PURPOSE: Inducible nitric oxide (NO) synthase (iNOS) has been implicated in the pathogenesis of endotoxin-induced uveitis (EIU). This study was undertaken to localize the cells, in the eye, which express iNOS during EIU in the rat. METHODS: EIU was induced in Lewis rats by a single foot pad injection of 150 micrograms lipopolysaccharide (LPS) from Salmonella typhimurium. At different time intervals after LPS injection, the authors evaluated ocular inflammation (slit lamp observation), iNOS localization by in situ hybridization, and comparison of OX-42- and ED1-positive cell appearance and of glial response by specific immunohistochemistry. RESULTS: iNOS mRNA was not detected in the iris-ciliary body nor in the retina of control rats. It was detected strongly in the epithelial cells of the iris-ciliary body at 6 hours and also in stromal cells of the ciliary processes at 16 hours after LPS injection. In the neuroretina, iNOS mRNA was observed in the inner layers 16 hours after LPS injection. iNOS-positive cells were also present on the vitreous at this time. At 6 and approximately 16 hours after LPS injection, immunohistochemistry experiments revealed a large number of OX-42- and ED1-positive cells (microglia, macrophages, or polymorphonuclear leukocytes) colocalized in part with some iNOS-positive cells in the ciliary body and in the retina. Furthermore, expression of iNOS in Müller cells cannot be excluded. CONCLUSIONS: These observations confirm that subcutaneous injection of endotoxin dramatically induces NOS mRNA expression in the eye, and they demonstrate that epithelial cells of the iris-ciliary body and cells infiltrating the anterior segment of the eye and the retina are the major source of NO. These results support the hypothesis that both inflammatory and resident ocular cells are involved in iNOS expression during EIU.  相似文献   

17.
OBJECTIVES: To characterize the mechanisms leading to excessive production of nitric oxide within the gut as a consequence of endotoxemia. We sought to: a) determine the time course of inducible nitric oxide synthase (iNOS) messenger RNA (mRNA) expression in the intestine after challenging rats with lipopolysaccharide (LPS); and b) investigate whether there is differential expression of iNOS in enterocytes along the longitudinal or crypt-villus axes of the intestine in rats after LPS administration. DESIGN: Prospective, randomized, unblinded study. SETTING: Research laboratories at a large university-affiliated medical center. SUBJECTS: Male Sprague-Dawley rats. INTERVENTIONS: At T = 0 hr, rats were injected with O111:B4 Escherichia coli LPS (5 mg/kg) or a similar volume of the saline vehicle. At various time points thereafter, samples of duodenum, jejunum, ileum, colon, and liver were harvested for subsequent extraction of RNA. In some cases, populations of enterocytes enriched in either crypt or villus cells were harvested from the ileum. In some studies, rats were injected with cycloheximide (25 mg i.p.) 15 mins before being challenged with LPS or dexamethasone (2 mg i.p.) 30 mins before being injected with LPS. MEASUREMENTS AND MAIN RESULTS: iNOS mRNA was undetectable in ileal tissue from rats under basal conditions, but was evident by T = 1 hr and was maximal at T = 2 hrs after injection of LPS. Thereafter, ileal iNOS mRNA concentrations decreased and were undetectable again at T = 24 hrs. At T = 2 hrs after LPS injection, there was marked expression of iNOS mRNA in the ileum, whereas much lower concentrations of iNOS mRNA were detected in the jejunum and colon, and no iNOS mRNA was detected in the duodenum. At T = 3 hrs after LPS injection, expression of iNOS mRNA was up-regulated in both villus and crypt cells, although LPS-induced iNOS mRNA was more prominent in the former than the latter cell type. Pretreatment of rats with dexamethasone virtually abrogated the expression of iNOS mRNA in ileal samples obtained 3 hrs after the injection of LPS. Prior treatment of rats with the protein synthesis inhibitor, cycloheximide, also blunted LPS-induced iNOS mRNA expression. CONCLUSIONS: LPS-induced iNOS expression is differentially regulated along both the longitudinal and crypt villus axes of the intestinal mucosa, being most prominent in the villus cells of the ileum. LPS-induced iNOS expression is blunted by pretreating rats with dexamethasone or cycloheximide. The latter finding suggests that LPS-induced expression of iNOS mRNA in the gut requires new protein synthesis. Differential regulation of nitric oxide production along the longitudinal and crypt-villus axes of the gut may be a determinant of the pattern of sepsis-induced intestinal damage.  相似文献   

18.
In previous work it was shown that the immune cytokine interferon-gamma (IFN-gamma) inhibits hormone secretion in anterior pituitary (AP) cell cultures, an action most likely mediated by folliculostellate (FS) cells. In the present study, we wanted to investigate whether nitric oxide (NO) is involved in this inhibitory action of IFN-gamma. NO synthase (NOS) inhibitors with affinity for the inducible (iNOS) and the constitutive (cNOS) isoform such as N(G)-monomethyl-L-arginine (L-NMMA) and S-methyl-L-thiocitrulline (SMLT) dose-dependently blocked the inhibitory action of IFN-gamma on GHRH-stimulated GH secretion, and partially reversed the inhibitory effect on basal prolactin (PRL) release. In the absence of IFN-gamma these inhibitors significantly augmented basal PRL release and slightly enhanced GHRH-stimulated GH release. L-N6-(1-iminoethyl)lysine (L-NIL), a NOS inhibitor with preferential affinity for iNOS, abrogated the IFN-gamma effect on GHRH-stimulated GH secretion and partially reversed IFN-gamma inhibition of PRL release. However, L-NIL did not exert a stimulatory effect on basal PRL and GHRH-stimulated GH release by its own. 2,4-diamino-6-hydroxypyrimidine (DAHP), a NOS inhibitor by interfering with tetrahydrobiopterin (BH4) cofactor availability, showed the same activity profile as L-NIL. NOS inhibitors blocked or reduced the production of NO as detected by measuring nitrite (NO2-) levels in AP cell cultures and cGMP levels in the NO-reporter cell line RFL-6. The NOS inhibiting action of L-NMMA was confirmed by competition experiments with the natural NOS substrate L-arginine. Thus, in culture medium with lower amounts of L-arginine, L-NMMA blocked the IFN-gamma-induced inhibition of GHRH-stimulated GH release at a lower dose. The inhibition of PRL and GH release by IFN-gamma was markedly reduced in L-arginine-depleted medium. The NO donor sodium nitroprusside (SNP) mimicked the inhibitory action of IFN-gamma on GHRH-stimulated GH and basal PRL release. Similarly to IFN-gamma, SNP did not affect basal GH release. As previously reported, inhibition by IFN-gamma occurred only in AP cell populations containing a minimal proportion of FS cells. As studied in different cell populations obtained by unit gravity sedimentation in a serum albumin gradient, L-NMMA reversed the IFN-gamma effect in the same populations enriched in FS cells. Interestingly, in the absence of IFN-gamma L-NMMA strongly stimulated basal PRL release in the population most enriched in FS cells. It is concluded that IFN-gamma through activation of the iNOS pathway probably in FS cells enhances the production of NO and that this effect is responsible for the inhibitory action of IFN-gamma on GHRH-stimulated GH release and partially for the IFN-gamma-induced decrease in basal PRL release. On the other hand, NO, likely produced by cNOS, appears to exert a tonic inhibitory effect on GHRH-stimulated GH and basal PRL release. It seems therefore that low amounts of NO produced constitutively may take charge of subtle physiological adaptations, and higher levels of NO produced by iNOS under the influence of IFN-gamma may attenuate PRL and GH release during emergency conditions of immune and inflammatory reactions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号