首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 874 毫秒
1.
Computer vision tasks such as registration, modeling and object recognition, are becoming increasingly useful in industry. Each of these applications employs correspondence algorithms to compute accurate mappings between partially overlapping surfaces. In industry, it is essential to select an appropriate correspondence algorithm for a given surface matching task. A correspondence framework has recently been proposed to assist in the selection and creation of correspondence algorithms for these tasks. This paper demonstrates how to use the correspondence framework to create a new surface matching algorithm, which uses stages of an existing model matching algorithm. The efficiency with which the new algorithm is created using the correspondence frame work is emphasized. In addition, results show that the new algorithm is both robust and efficient. The text was submitted by the authors in English. Birgit Maria Planitz, born in 1978, received B. Engineering (Hons) degree at the Queensland University of Technology (QUT) in Brisbane, Australia (2001). Dr. Planitz then continued her studies at QUT, enrolling in a PhD. The PhD was in the field of computer vision, specializing in three-dimensional surface matching. Dr. Planitz graduated from her postraduate degree in 2005, with two major journal publications, six conference papers and a technical report. She is currently working for the e-Health Research Centre/CSIRO ICT Centre. Dr. Planitz is a member of the Australia Pattern Recognition Society. Anthony John Maeder, born 1958, graduated with B. Science (Hons) from University of Witwatersrand in 1980 and M. Science from the University of Natal in 1982. He was awarded his PhD in 1992 by Monash University. Dr. Maeder is currently the Research Director, E-Health Research Centre/CSIRO ICT Centre and Adjunct Professor, Faculty of Health Sciences, University of Queensland. His research areas include digital image processing, image and video compression, medical imaging, computer graphics and visualization. Dr. Maeder has 200 publications consisting of 10 monographs and proceedings, 20 journal papers and 180 conference papers. He is a fellow of the Institution of Engineers Australia; a member of IEEE, ACM, ACS, HISA; a member of SPIE International Technical Committee for Medical Imaging; and a member of national executive committee of the Australian Pattern Recognition Society. John Alan Williams, born in 1973, was awarded his PhD from the Queensland University of Technology (QUT), Australia, in 2001. He was previously awarded undergraduate degrees in Electronic Engineering and Information Technology (Hons), also from QUT, in 1995. He is currently employed at the School of ITEE at The University of Queensland, Brisbane, Australia, where he holds the position of Research Fellow. Dr. William’s research interests include reconfigurable computing and realtime embedded systems, as well as 3D computer vision and imaging. He has authored 5 refereed journal publications and more than 20 refereed conference publications, and has recently edited the Proceedings of the 2004 IEEE International Conference on Field Programmable Technology. He has been a member of the IEEE for eight years.  相似文献   

2.
In software testing, developing effective debugging strategies is important to guarantee the reliability of software under testing. A heuristic technique is to cause failure and therefore expose faults. Based on this approach mutation testing has been found very useful technique in detecting faults. However, it suffers from two problems with successfully testing programs: (1) requires extensive computing resources and (2) puts heavy demand on human resources. Later, empirical observations suggest that critical slicing based on Statement Deletion (Sdl) mutation operator has been found the most effective technique in reducing effort and the required computing resources in locating the program faults. The second problem of mutation testing may be solved by automating the program testing with the help of software tools. Our study focuses on determining the effectiveness of the critical slicing technique with the help of the Mothra Mutation Testing System in detecting program faults. This paper presents the results showing the performance of Mothra Mutation Testing System through conducting critical slicing testing on a selected suite of programs. Zuhoor Abdullah Al-Khanjari is an assistant professor in the Computer Science Department at Sultan Qaboos University, Sultanate of Oman. She received her BSc in mathematics and computing from Sultan Qaboos University, MSc and PhD in Computer Science (Software Engineering) from the University of Liverpool, UK. Her research interests include software testing, database management, e-learning, human-computer interaction, programming languages, intelligent search engines, and web data mining and development. ~Currently, she is the coordinator of the software engineering research group in the Department of Computer Science, College of Science, Sultan Qaboos University. She is also coordinating a program to develop e-learning based undergraduate teaching in the Department of Computer Science. Currently she is holding the position of assistant dean for postgraduate studies and research in the College of Science, Sultan Qaboos University, Sultanate of Oman. Martin Woodward is a Senior Fellow in the Computer Science Department at the University of Liverpool in the UK. After obtaining BSc and Ph.D. degrees in mathematics from the University of Nottingham, he was employed by the University of Oxford as a Research Assistant on secondment to the UK Atomic Energy Authority at the Culham Laboratory. He has been at the University of Liverpool for many years and initially worked on the so-called ‘Testbed’ project, helping to develop automated tools for software testing which are now marketed successfully by a commercial organisation. His research interests include software testing techniques, the relationship between formal methods and testing, and software visualisation. He has served as Editor of the journal ‘Software Testing, Verification and Reliability’ for the past thirteen years. Haider Ramadhan is an associate professor in the Computer Science Department at Sultan Qaboos University. He received his BS and MS in Computer Science from University of North Carolina, and the PhD in Computer Science and AI from Sussex University. His research interests include visualization of software, systems, and process, system engineering, human-computer interaction, intelligent search engines, and Web data mining and development. Currently, he is the chairman of the Computer Science Department, College of Science, Sultan Qaboos University, Sultanate of Oman. Swamy Kutti (N. S. Kutti) is an associate professor in the Computer Science Department at Sultan Qaboos University. He received his B.E. in Electronics Engineering from the University of Madras, M.E. in Communication Engineering from Indian Institute of Science (Bangalore), and the MSc in Computer Science from Monash University (Australia) and PhD in Computer Science from Deakin University (Australia). His research interests include Real-Time Programming, Programming Languages, Program Testing and Verification, eLearning, and Distributed Operating Systems.  相似文献   

3.
Ensuring causal consistency in a Distributed Shared Memory (DSM) means all operations executed at each process will be compliant to a causality order relation. This paper first introduces an optimality criterion for a protocol P, based on a complete replication of variables at each process and propagation of write updates, that enforces causal consistency. This criterion measures the capability of a protocol to update the local copy as soon as possible while respecting causal consistency. Then we present an optimal protocol built on top of a reliable broadcast communication primitive and we show how previous protocols based on complete replication presented in the literature are not optimal. Interestingly, we prove that the optimal protocol embeds a system of vector clocks which captures the read/write semantics of a causal memory. From an operational point of view, an optimal protocol strongly reduces its message buffer overhead. Simulation studies show that the optimal protocol roughly buffers a number of messages of one order of magnitude lower than non-optimal ones based on the same communication primitive. R. Baldoni Roberto Baldoni is a Professor of Distributed Systems at the University of Rome “La Sapienza”. He published more than one hundred papers (from theory to practice) in the fields of distributed and mobile computing, middleware platforms and information systems. He is the founder of MIDdleware LABoratory <://www.dis.uniroma1.it/&dollar;∼midlab> textgreater (MIDLAB) whose members participate to national and european research projects. He regularly serves as an expert for the EU commission in the evaluation of EU projects. Roberto Baldoni chaired the program committee of the “distributed algorithms” track of the 19th IEEE International Conference on Distributed Computing Systems (ICDCS-99) and /he was PC Co-chair of the ACM International Workshop on Principles of Mobile Computing/ (POMC). He has been also involved in the organizing and program committee of many premiership international conferences and workshops. A. Milani Alessia Milani is currently involved in a joint research doctoral thesis between the Department of Computer and Systems Science of the University of Rome “La Sapienza” and the University of Rennes I, IRISA.She earned a Laurea degree in Computer Engineering at University of Rome “La Sapienza” on May 2003. Her research activity involves the area of distributed systems. Her current research interests include communication paradigms, in particular distributed shared memories, replication and consistency criterions. S. Tucci Piergiovanni Sara Tucci Piergiovanni is currently a Ph.D. Student at the Department of Computer and Systems Science of the University of Rome “La Sapienza”.She earned a Laurea degree in Computer Engineering at University of Rome “La Sapienza” on March 2002 with marks 108/110. Her laurea thesis has been awarded the italian national “Federcommin-AICA” prize 2002 for best laurea thesis in Information Technology. Her research activity involves the area of distributed systems. Early works involved the issue of fault-tolerance in asynchronous systems and software replication. Currently, her main focus is on communication paradigms that provide an “anonymous” communication as publish/subscribe and distributed shared memories. The core contributions are several papers published in international conferences and journals.  相似文献   

4.
It is likely that customers issue requests based on out-of-date information in e-commerce application systems. Hence, the transaction failure rates would increase greatly. In this paper, we present a preference update model to address this problem. A preference update is an extended SQL update statement where a user can request the desired number of target data items by specifying multiple preferences. Moreover, the preference update allows easy extraction of criteria from a set of concurrent requests and, hence, optimal decisions for the data assignments can be made. We propose a group evaluation strategy for preference update processing in a multidatabase environment. The experimental results show that the group evaluation can effectively increase the customer satisfaction level with acceptable cost. Peng Li is the Chief Software Architect of didiom LLC. Before that, he was a visiting assistant professor of computer science department in Western Kentucky University. He received his Ph.D. degree of computer science from the University of Texas at Dallas. He also holds a B.Sc. and M.S. in Computer Science from the Renmin University of China. His research interests include database systems, database security, transaction processing, distributed and Internet computer and E-commerce. Manghui Tu received a Bachelor degree of Science from Wuhan University, P.R. China in 1996, and a Master Degree in Computer Science from the University of Texas at Dallas 2001. He is currently working toward the PhD degree in the Department of Computer Science at the University of Texas at Dallas. Mr. Tu’s research interests include distributed systems, grid computing, information security, mobile computing, and scientific computing. His PhD research work focus on the data management in secure and high performance data grid. He is a student member of the IEEE. I-Ling Yen received her BS degree from Tsing-Hua University, Taiwan, and her MS and PhD degrees in Computer Science from the University of Houston. She is currently an Associate Professor of Computer Science at the University of Texas at Dallas. Dr. Yen’s research interests include fault-tolerant computing, security systems and algorithms, distributed systems, Internet technologies, E-commerce, and self-stabilizing systems. She had published over 100 technical papers in these research areas and received many research awards from NSF, DOD, NASA, and several industry companies. She has served as Program Committee member for many conferences and Program Chair/Co-Chair for the IEEE Symposium on Application-Specific Software and System Engineering & Technology, IEEE High Assurance Systems Engineering Symposium, IEEE International Computer Software and Applications Conference, and IEEE International Symposium on Autonomous Decentralized Systems. She is a member of the IEEE. Zhonghang Xia received the B.S. degree in applied mathematics from Dalian University of Technology in 1990, the M.S. degree in Operations Research from Qufu Normal University in 1993, and the Ph.D. degree in computer science from the University of Texas at Dallas in 2004. He is now an assistant professor in the Department of Computer Science, Western Kentucky University, Bowling Green, KY. His research interests are in the area of multimedia computing and networking, distributed systems, and data mining.  相似文献   

5.
6.
Our objective is spoken-language classification for helpdesk call routing using a scanning understanding and intelligent-system techniques. In particular, we examine simple recurrent networks, support-vector machines and finite-state transducers for their potential in this spoken-language-classification task and we describe an approach to classification of recorded operator-assistance telephone utterances. The main contribution of the paper is a comparison of a variety of techniques in the domain of call routing. Support-vector machines and transducers are shown to have some potential for spoken-language classification, but the performance of the neural networks indicates that a simple recurrent network performs best for helpdesk call routing. Sheila Garfield received a BSc (Hons) in computing from the University of Sunderland in 2000 where, as part of her programme of study, she completed a project associated with aphasic language processing. She received her PhD from the same university, in 2004, for a programme of work connected with hybrid intelligent systems and spoken-language processing. In her PhD thesis, she collaborated with British Telecom and suggested a novel hybrid system for call routing. Her research interests are natural language processing, hybrid systems, intelligent systems. Stefan Wermter holds the Chair in Intelligent Systems and is leading the Intelligent Systems Division at the University of Sunderland, UK. His research interests are intelligent systems, neural networks, cognitive neuroscience, hybrid systems, language processing and learning robots. He has a diploma from the University of Dortmund, Germany, an MSc from the University of Massachusetts, USA, and a PhD in habilitation from the University of Hamburg, Germany, all in Computer Science. He was a Research Scientist at Berkeley, CA, before joining the University of Sunderland. Professor Wermter has written edited, or contributed to 8 books and published about 80 articles on this research area.  相似文献   

7.
8.
On-demand broadcast is an attractive data dissemination method for mobile and wireless computing. In this paper, we propose a new online preemptive scheduling algorithm, called PRDS that incorporates urgency, data size and number of pending requests for real-time on-demand broadcast system. Furthermore, we use pyramid preemption to optimize performance and reduce overhead. A series of simulation experiments have been performed to evaluate the real-time performance of our algorithm as compared with other previously proposed methods. The experimental results show that our algorithm substantially outperforms other algorithms over a wide range of workloads and parameter settings. The work described in this paper was partially supported by grants from CityU (Project No. 7001841) and RGC CERG Grant No. HKBU 2174/03E. This paper is an extended version of the paper “A preemptive scheduling algorithm for wireless real-time on-demand data broadcast” that appeared in the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications. Victor C. S. Lee received his Ph.D. degree in Computer Science from the City University of Hong Kong in 1997. He is now an Assistant Professor in the Department of Computer Science of the City University of Hong Kong. Dr. Lee is a member of the ACM, the IEEE and the IEEE Computer Society. He is currently the Chairman of the IEEE, Hong Kong Section, Computer Chapter. His research interests include real-time data management, mobile computing, and transaction processing. Xiao Wu received the B.Eng. and M.S. degrees in computer science from Yunnan University, Kunming, China, in 1999 and 2002, respectively. He is currently a Ph.D. candidate in the Department of Computer Science at the City University of Hong Kong. He was with the Institute of Software, Chinese Academy of Sciences, Beijing, China, between January 2001 and July 2002. From 2003 to 2004, he was with the Department of Computer Science of the City University of Hong Kong, Hong Kong, as a Research Assistant. His research interests include multimedia information retrieval, video computing and mobile computing. Joseph Kee-Yin NG received a B.Sc. in Mathematics and Computer Science, a M.Sc. in Computer Science, and a Ph.D. in Computer Science from the University of Illinois at Urbana-Champaign in the years 1986, 1988, and 1993, respectively. Prof. Ng is currently a professor in the Department of Computer Science at Hong Kong Baptist University. His current research interests include Real-Time Networks, Multimedia Communications, Ubiquitous/Pervasive Computing, Mobile and Location- aware Computing, Performance Evaluation, Parallel and Distributed Computing. Prof. Ng is the Technical Program Chair for TENCON 2006, General Co-Chair for The 11th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA 2005), Program Vice Chair for The 11th International Conference on Parallel and Distributed Systems (ICPADS 2005), Program Area-Chair for The 18th & 19th International Conference on Advanced Information Networking and Applications (AINA 2004 & AINA 2005), General Co-Chair for The International Computer Congress 1999 & 2001 (ICC’99 & ICC’01), Program Co-Chair for The Sixth International Conference on Real-Time Computing Systems and Applications (RTCSA’99) and General Co-Chair for The 1999 and 2001 International Computer Science Conference (ICSC’99 & ICSC’01). Prof. Ng is a member of the Editorial Board of Journal of Pervasive Computing and Communications, Journal of Ubiquitous Computing and Intelligence, Journal of Embedded Computing, and Journal of Microprocessors and Microsystems. He is the Associate Editor of Real-Time Systems Journal and Journal of Mobile Multimedia. He is also a guest editor of International Journal of Wireless and Mobile Computing for a special issue on Applications, Services, and Infrastructures for Wireless and Mobile Computing. Prof. Ng is currently the Region 10 Coordinator for the Chapter Activities Board of the IEEE Computer Society, and is the Coordinator of the IEEE Computer Society Distinguished Visitors Program (Asia/Pacific). He is a senior member of the IEEE and has been a member of the IEEE Computer Society since 1991. Prof. Ng has been an Exco-member (1993–95), General Secretary (1995–1997), Vice-Chair (1997–1999), Chair (1999–2001) and the Past Chair of the IEEE, Hong Kong Section, Computer Chapter. Prof. Ng received the Certificate of Appreciation for Services and Contribution (2004) from IEEE Hong Kong Section, the Certificate of Appreciation for Leadership and Service (2000–2001) from IEEE Region 10 and the IEEE Meritorious Service Award from IEEE Computer Society at 2004. He is also a member of the IEEE Communication Society, ACM and the Founding Member for the Internet Society (ISOC)-Hong Kong Chapter.  相似文献   

9.
Advances in wireless and mobile computing environments allow a mobile user to access a wide range of applications. For example, mobile users may want to retrieve data about unfamiliar places or local life styles related to their location. These queries are called location-dependent queries. Furthermore, a mobile user may be interested in getting the query results repeatedly, which is called location-dependent continuous querying. This continuous query emanating from a mobile user may retrieve information from a single-zone (single-ZQ) or from multiple neighbouring zones (multiple-ZQ). We consider the problem of handling location-dependent continuous queries with the main emphasis on reducing communication costs and making sure that the user gets correct current-query result. The key contributions of this paper include: (1) Proposing a hierarchical database framework (tree architecture and supporting continuous query algorithm) for handling location-dependent continuous queries. (2) Analysing the flexibility of this framework for handling queries related to single-ZQ or multiple-ZQ and propose intelligent selective placement of location-dependent databases. (3) Proposing an intelligent selective replication algorithm to facilitate time- and space-efficient processing of location-dependent continuous queries retrieving single-ZQ information. (4) Demonstrating, using simulation, the significance of our intelligent selective placement and selective replication model in terms of communication cost and storage constraints, considering various types of queries. Manish Gupta received his B.E. degree in Electrical Engineering from Govindram Sakseria Institute of Technology & Sciences, India, in 1997 and his M.S. degree in Computer Science from University of Texas at Dallas in 2002. He is currently working toward his Ph.D. degree in the Department of Computer Science at University of Texas at Dallas. His current research focuses on AI-based software synthesis and testing. His other research interests include mobile computing, aspect-oriented programming and model checking. Manghui Tu received a Bachelor degree of Science from Wuhan University, P.R. China, in 1996, and a Master's Degree in Computer Science from the University of Texas at Dallas 2001. He is currently working toward the Ph.D. degree in the Department of Computer Science at the University of Texas at Dallas. Mr. Tu's research interests include distributed systems, wireless communications, mobile computing, and reliability and performance analysis. His Ph.D. research work focuses on the dependent and secure data replication and placement issues in network-centric systems. Latifur R. Khan has been an Assistant Professor of Computer Science department at University of Texas at Dallas since September 2000. He received his Ph.D. and M.S. degrees in Computer Science from University of Southern California (USC) in August 2000 and December 1996, respectively. He obtained his B.Sc. degree in Computer Science and Engineering from Bangladesh University of Engineering and Technology, Dhaka, Bangladesh, in November of 1993. Professor Khan is currently supported by grants from the National Science Foundation (NSF), Texas Instruments, Alcatel, USA, and has been awarded the Sun Equipment Grant. Dr. Khan has more than 50 articles, book chapters and conference papers focusing in the areas of database systems, multimedia information management and data mining in bio-informatics and intrusion detection. Professor Khan has also served as a referee for database journals, conferences (e.g. IEEE TKDE, KAIS, ADL, VLDB) and he is currently serving as a program committee member for the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD2005), ACM 14th Conference on Information and Knowledge Management (CIKM 2005), International Conference on Database and Expert Systems Applications DEXA 2005 and International Conference on Cooperative Information Systems (CoopIS 2005), and is program chair of ACM SIGKDD International Workshop on Multimedia Data Mining, 2004. Farokh Bastani received the B.Tech. degree in Electrical Engineering from the Indian Institute of Technology, Bombay, and the M.S. and Ph.D. degrees in Computer Science from the University of California, Berkeley. He is currently a Professor of Computer Science at the University of Texas at Dallas. Dr. Bastani's research interests include various aspects of the ultrahigh dependable systems, especially automated software synthesis and testing, embedded real-time process-control and telecommunications systems and high-assurance systems engineering. Dr. Bastani was the Editor-in-Chief of the IEEE Transactions on Knowledge and Data Engineering (IEEE-TKDE). He is currently an emeritus EIC of IEEE-TKDE and is on the editorial board of the International Journal of Artificial Intelligence Tools, the International Journal of Knowledge and Information Systems and the Springer-Verlag series on Knowledge and Information Management. He was the program cochair of the 1997 IEEE Symposium on Reliable Distributed Systems, 1998 IEEE International Symposium on Software Reliability Engineering, 1999 IEEE Knowledge and Data Engineering Workshop, 1999 International Symposium on Autonomous Decentralised Systems, and the program chair of the 1995 IEEE International Conference on Tools with Artificial Intelligence. He has been on the program and steering committees of several conferences and workshops and on the editorial boards of the IEEE Transactions on Software Engineering, IEEE Transactions on Knowledge and Data Engineering and the Oxford University Press High Integrity Systems Journal. I-Ling Yen received her B.S. degree from Tsing-Hua University, Taiwan, and her M.S. and Ph.D. degrees in Computer Science from the University of Houston. She is currently an Associate Professor of Computer Science at University of Texas at Dallas. Dr. Yen's research interests include fault-tolerant computing, security systems and algorithms, distributed systems, Internet technologies, E-commerce and self-stabilising systems. She has published over 100 technical papers in these research areas and received many research awards from NSF, DOD, NASA and several industry companies. She has served as Program Committee member for many conferences and Program Chair/Cochair for the IEEE Symposium on Application-Specific Software and System Engineering & Technology, IEEE High Assurance Systems Engineering Symposium, IEEE International Computer Software and Applications Conference, and IEEE International Symposium on Autonomous Decentralized Systems. She has also served as a guest editor for a theme issue of IEEE Computer devoted to high-assurance systems.  相似文献   

10.
This paper addresses the problem of resource allocation for distributed real-time periodic tasks, operating in environments that undergo unpredictable changes and that defy the specification of meaningful worst-case execution times. These tasks are supplied by input data originating from various environmental workload sources. Rather than using worst-case execution times (WCETs) to describe the CPU usage of the tasks, we assume here that execution profiles are given to describe the running time of the tasks in terms of the size of the input data of each workload source. The objective of resource allocation is to produce an initial allocation that is robust against fluctuations in the environmental parameters. We try to maximize the input size (workload) that can be handled by the system, and hence to delay possible (costly) reallocations as long as possible. We present an approximation algorithm based on first-fit and binary search that we call FFBS. As we show here, the first-fit algorithm produces solutions that are often close to optimal. In particular, we show analytically that FFBS is guaranteed to produce a solution that is at least 41% of optimal, asymptotically, under certain reasonable restrictions on the running times of tasks in the system. Moreover, we show that if at most 12% of the system utilization is consumed by input independent tasks (e.g., constant time tasks), then FFBS is guaranteed to produce a solution that is at least 33% of optimal, asymptotically. Moreover, we present simulations to compare FFBS approximation algorithm with a set of standard (local search) heuristics such as hill-climbing, simulated annealing, and random search. The results suggest that FFBS, in combination with other local improvement strategies, may be a reasonable approach for resource allocation in dynamic real-time systems. David Juedes is a tenured associate professor and assistant chair for computer science in the School of Electrical Engineering and Computer Science at Ohio University. Dr. Juedes received his Ph.D. in Computer Science from Iowa State University in 1994, and his main research interests are algorithm design and analysis, the theory of computation, algorithms for real-time systems, and bioinformatics. Dr. Juedes has published numerous conference and journal papers and has acted as a referee for IEEE Transactions on Computers, Algorithmica, SIAM Journal on Computing, Theoretical Computer Science, Information and Computation, Information Processing Letters, and other conferences and journals. Dazhang Gu is a software architect and researcher at Pegasus Technologies (NeuCo), Inc. He received his Ph.D. in Electrical Engineering and Computer Science from Ohio University in 2005. His main research interests are real-time systems, distributed systems, and resource optimization. He has published conference and journal papers on these subjects and has refereed for the Journal of Real-Time Systems, IEEE Transactions on Computers, and IEEE Transactions on Parallel and Distributed Systems among others. He also served as a session chair and publications chair for several conferences. Frank Drews is an Assistant Professor of Electical Engineering and Computer Science at Ohio Unversity. Dr. Drews received his Ph.D. in Computer Science from the Clausthal Unversity of Technolgy in Germany in 2002. His main research interests are resource management for operating systems and real-time systems, and bioinformatics. Dr. Drews has numerous publications in conferences and journals and has served as a reviewer for IEEE Transactions on Computers, the Journal of Systems and Software, and other conferences and Journals. He was Publication Chair for the OCCBIO’06 conference, Guest Editor of a Special Issue of the Journal of Systems and Software on “Dynamic Resource Management for Distributed Real-Time Systems”, organizer of special tracks at the IEEE IPDPS WPDRTS workshops in 2005 and 2006. Klaus Ecker received his Ph.D. in Theoretical Physics from the University of Graz, Austria, and his Dr. habil. in Computer Science from the University of Bonn. Since 1978 he is professor in the Department of Computer Science at the Clausthal University of Technology, Germany, and since 2005 he is visiting professor at the Ohio University. His research interests are parallel processing and theory of scheduling, especially in real time systems, and bioinformatics. Prof. Ecker published widely in the above mentioned areas in well reputed journals and proceedings of international conferences as well. He is also the author of two monographs on scheduling theory. Since 1981 he is organizing annually international workshops on parallel processing. He is associate editor of Real Time Systems, and member of the German Gesellschaft fuer Informatik (GI) and of the Association for Computing Machinery (ACM). Lonnie R. Welch received a Ph.D. in Computer and Information Science from the Ohio State University. Currently, he is the Stuckey Professor of Electrical Engineering and Computer Science at Ohio University. Dr. Welch performs research in the areas of real-time systems, distributed computing and bioinformatics. His research has been sponsored by the Defense Advanced Research Projects Agency, the Navy, NASA, the National Science Foundation and the Army. Dr. Welch has twenty years of research experience in the area of high performance computing. In his graduate work at Ohio State University, he developed a high performance 3-D graphics rendering algorithm, and he invented a parallel virtual machine for object-oriented software. For the past 15 years his research has focused on middleware and optimization algorithms for high performance computing. His research has produced three successive generations of adaptive resource management (RM) middleware for high performance real-time systems. The project has resulted in two patents and more than 150 publications. Professor Welch also collaborates on diabetes research with faculty at Edison Biotechnology Institute and on genomics research with faculty in the Department of Environmental and Plant Biology at Ohio University. Dr. Welch is a member of the editorial boards of IEEE Transactions on Computers, The Journal of Scalable Computing: Practice and Experience, and The International Journal of Computers and Applications. He is also the founder of the International Workshop on Parallel and Distributed Real-time Systems and of the Ohio Collaborative Conference on Bioinformatics. Silke Schomann graduated in 2003 with a M.Sc. in Computer Science from Clausthal University Of Technology, where she has been working as a scientific assistant since then. She is currently working on her Ph.D. thesis in computer science at the same university.  相似文献   

11.
12.
13.
Recently, mining from data streams has become an important and challenging task for many real-world applications such as credit card fraud protection and sensor networking. One popular solution is to separate stream data into chunks, learn a base classifier from each chunk, and then integrate all base classifiers for effective classification. In this paper, we propose a new dynamic classifier selection (DCS) mechanism to integrate base classifiers for effective mining from data streams. The proposed algorithm dynamically selects a single “best” classifier to classify each test instance at run time. Our scheme uses statistical information from attribute values, and uses each attribute to partition the evaluation set into disjoint subsets, followed by a procedure that evaluates the classification accuracy of each base classifier on these subsets. Given a test instance, its attribute values determine the subsets that the similar instances in the evaluation set have constructed, and the classifier with the highest classification accuracy on those subsets is selected to classify the test instance. Experimental results and comparative studies demonstrate the efficiency and efficacy of our method. Such a DCS scheme appears to be promising in mining data streams with dramatic concept drifting or with a significant amount of noise, where the base classifiers are likely conflictive or have low confidence. A preliminary version of this paper was published in the Proceedings of the 4th IEEE International Conference on Data Mining, pp 305–312, Brighton, UK Xingquan Zhu received his Ph.D. degree in Computer Science from Fudan University, Shanghai, China, in 2001. He spent four months with Microsoft Research Asia, Beijing, China, where he was working on content-based image retrieval with relevance feedback. From 2001 to 2002, he was a Postdoctoral Associate in the Department of Computer Science, Purdue University, West Lafayette, IN. He is currently a Research Assistant Professor in the Department of Computer Science, University of Vermont, Burlington, VT. His research interests include Data mining, machine learning, data quality, multimedia computing, and information retrieval. Since 2000, Dr. Zhu has published extensively, including over 40 refereed papers in various journals and conference proceedings. Xindong Wu is a Professor and the Chair of the Department of Computer Science at the University of Vermont. He holds a Ph.D. in Artificial Intelligence from the University of Edinburgh, Britain. His research interests include data mining, knowledge-based systems, and Web information exploration. He has published extensively in these areas in various journals and conferences, including IEEE TKDE, TPAMI, ACM TOIS, IJCAI, ICML, KDD, ICDM, and WWW, as well as 11 books and conference proceedings. Dr. Wu is the Editor-in-Chief of the IEEE Transactions on Knowledge and Data Engineering (by the IEEE Computer Society), the founder and current Steering Committee Chair of the IEEE International Conference on Data Mining (ICDM), an Honorary Editor-in-Chief of Knowledge and Information Systems (by Springer), and a Series Editor of the Springer Book Series on Advanced Information and Knowledge Processing (AI&KP). He is the 2004 ACM SIGKDD Service Award winner. Ying Yang received her Ph.D. in Computer Science from Monash University, Australia in 2003. Following academic appointments at the University of Vermont, USA, she currently holds a Research Fellow at Monash University, Australia. Dr. Yang is recognized for contributions in the fields of machine learning and data mining. She has published many scientific papers and book chapters on adaptive learning, proactive mining, noise cleansing and discretization. Contact her at yyang@mail.csse.monash.edu.au.  相似文献   

14.
Software architecture evaluation involves evaluating different architecture design alternatives against multiple quality-attributes. These attributes typically have intrinsic conflicts and must be considered simultaneously in order to reach a final design decision. AHP (Analytic Hierarchy Process), an important decision making technique, has been leveraged to resolve such conflicts. AHP can help provide an overall ranking of design alternatives. However it lacks the capability to explicitly identify the exact tradeoffs being made and the relative size of these tradeoffs. Moreover, the ranking produced can be sensitive such that the smallest change in intermediate priority weights can alter the final order of design alternatives. In this paper, we propose several in-depth analysis techniques applicable to AHP to identify critical tradeoffs and sensitive points in the decision process. We apply our method to an example of a real-world distributed architecture presented in the literature. The results are promising in that they make important decision consequences explicit in terms of key design tradeoffs and the architecture's capability to handle future quality attribute changes. These expose critical decisions which are otherwise too subtle to be detected in standard AHP results. Liming Zhu is a PHD candidate in the School of Computer Science and Engineering at University of New South Wales. He is also a member of the Empirical Software Engineering Group at National ICT Australia (NICTA). He obtained his BSc from Dalian University of Technology in China. After moving to Australia, he obtained his MSc in computer science from University of New South Wales. His principle research interests include software architecture evaluation and empirical software engineering. Aybüke Aurum is a senior lecturer at the School of Information Systems, Technology and Management, University of New South Wales. She received her BSc and MSc in geological engineering, and MEngSc and PhD in computer science. She also works as a visiting researcher in National ICT, Australia (NICTA). Dr. Aurum is one of the editors of “Managing Software Engineering Knowledge”, “Engineering and Managing Software Requirements” and “Value-Based Software Engineering” books. Her research interests include management of software development process, software inspection, requirements engineering, decision making and knowledge management in software development. She is on the editorial boards of Requirements Engineering Journal and Asian Academy Journal of Management. Ian Gorton is a Senior Researcher at National ICT Australia. Until Match 2004 he was Chief Architect in Information Sciences and Engineering at the US Department of Energy's Pacific Northwest National Laboratory. Previously he has worked at Microsoft and IBM, as well as in other research positions. His interests include software architectures, particularly those for large-scale, high-performance information systems that use commercial off-the-shelf (COTS) middleware technologies. He received a PhD in Computer Science from Sheffield Hallam University. Dr. Ross Jeffery is Professor of Software Engineering in the School of Computer Science and Engineering at UNSW and Program Leader in Empirical Software Engineering in National ICT Australia Ltd. (NICTA). His current research interests are in software engineering process and product modeling and improvement, electronic process guides and software knowledge management, software quality, software metrics, software technical and management reviews, and software resource modeling and estimation. His research has involved over fifty government and industry organizations over a period of 15 years and has been funded from industry, government and universities. He has co-authored four books and over one hundred and twenty research papers. He has served on the editorial board of the IEEE Transactions on Software Engineering, and the Wiley International Series in Information Systems and he is Associate Editor of the Journal of Empirical Software Engineering. He is a founding member of the International Software Engineering Research Network (ISERN). He was elected Fellow of the Australian Computer Society for his contribution to software engineering research.  相似文献   

15.
We have developed a high-throughput, compact network switch (the RHiNET-2/SW) for a distributed parallel computing system. Eight pairs of 800-Mbit/s×12-channel optical interconnection modules and a CMOS ASIC switch are integrated on a compact circuit board. To realize high-throughput (64 Gbit/s) and low-latency network, the SW-LSI has a customized high-speed LVDS I/O interface, and a high-speed internal SRAM memory in a 784-pin BGA one-chip package. We have also developed device implementation technologies to overcome the electrical problems (loss and crosstalk) caused by such high integration. The RHiNET-2/SW system enables high-performance parallel processing in a distributed computing environment. Shinji Nishimura: He is a researcher in the Department of Network System at the Central Research Laboratory, Hitachi Ltd., at Tokyo. He obtained his bachelors degree in Electronics Engineering from the University of Tokyo in 1989, and his M.E. from the University of Tokyo in 1991. He joined a member of the Optical Interconnection Hitachi Laboratory from 1992. His research interests are in hardware technology for the optical interconnection technologies in the computer and communication systems. Katsuyoshi Harasawa: He is a Senior Enginner of Hitachi Communication Systems Inc. He obtained his bachelors degree in Electrical Engineering from Tokyo Denki University. He is a chief of development of the devices and systems for the optical telecommunication. He was engaged in Development of Optical Reciever and Transmitter module. He joined RWCP project from 1997. His research interests are in hardward technology for optical interconnection in distributed parallel computing system (RHiNET). Nobuhiro Matsudaira: He is a engineer in the Hitachi Communication Systems, Inc. He obtained his bachelors degree in Mercantile Marine Engineering from the Kobe University of Mercantile Marine in 1986. He was engaged in Development of Optical Reciever and Transmitter module at 2.4 Gbit/s to 10Gbit/s. He joined RWCP project from 1998. His reserch interests are in hardware technology for the optical interconnection technology in the computer and communication systems. Shigeto Akutsu: He is a staff in Hitachi Communication Systems Inc. He obtained his bachelors degree in Electronics from Kanagawa University, Japan in 1998. His research interests are hardware technology for the optical interconnection technology in the computer and communication systems. Tomohiro Kudoh, Ph.D.: He received Ph.D. degree from Keio University, Japan in 1992. He has been chief of the parallel and distributed architecture laboratory, Real World Computing Partnership since 1997. His research interests include the area of parallel processing and network for high performance computing. Hiroaki Nishi: He received B.E., M.E. from Keio University, Japan, in 1994, 1996, respectively. He joined Parallel & Distributed Architecture Laboratory, Real World Computing Partnership in 1999. He is currently working on his Ph.D. His research interests include area of interconnection networks. Hideharu Amano, Ph.D.: He received Ph.D. degree from Keio University, Japan in 1986. He is now an Associate Professor in the Department of Information and Computer Science, Keio University. His research interests include the area of parallel processing and reconfigurable computing.  相似文献   

16.
Software development methodologies usually contain guidance on what steps to follow in order to obtain the desired product. At the same time, capability assessment frameworks usually assess the process that is followed on a project in practice in the context of a process reference model, defined separately and independently of any particular methodology. This results in the need for extra effort when trying to match a given process reference model with an organisation’s enacted processes. This paper introduces a metamodel for the definition of assessable methodologies, that is, methodologies that are constructed with assessment in mind and that contain a built-in process reference model. Organisations using methodologies built from this metamodel will benefit from automatically ensuring that their executed work conforms to the appropriate assessment model. Cesar Gonzalez-Perez is a post-doctoral research fellow in the Faculty of Information Technology at UTS, where he is currently researching with Professor Henderson-Sellers in object-oriented methodologies, with particular emphasis on metamodelling and component-based, assessable methodologies. He is the founder and former technical director of Neco, a company based in Spain specializing in software development support services, which include the deployment and use of the OPEN/Metis methodology at small and mid-sized organizations. He has also worked for the University of Santiago de Compostela in Spain as a researcher in computing & archaeology, and received his Ph.D. in this topic in 2000. Tom McBride has more than twenty years in the computer industry in positions ranging from computer operator, developer, project manager to QA manager. He is significantly involved in standards development, both locally in Australia and internationally for the International Standards Organisation. Tom is Chairman of the Australian Computer Society National Standards Committee and is assisting the development of the OOSPICE Component Based Development methodology. He is also a lecturer in software development-related subjects at the University of Technology, Sydney and is currently enrolled as a Ph.D.student investigating coordination in software development. Brian Henderson-Sellers is Director of the Centre for Object Technology Applications and Research and Professor of Information Systems at UTS. He is author of eleven books on object technology and is well-known for his work in OO methodologies (MOSES, COMMA, OPEN, OOSPICE) and in OO metrics. Brian has been Regional Editor of Object-Oriented Systems, a member of the editorial board of Object Magazine/Component Strategies and Object Expert for many years and is currently on the editorial board of Journal of Object Technology and Software and Systems Modelling. He was the Founder of the Object-Oriented Special Interest Group of the Australian Computer Society (NSW Branch) and Chairman of the Computerworld Object Developers’ Awards committee for ObjectWorld 94 and 95 (Sydney). He is a frequent, invited speaker at international OT conferences. In 1999, he was voted number 3 in the Who’s Who of Object Technology (Handbook of Object Technology, CRC Press, Appendix N). He is currently a member of the Review Panel for the OMG’s Software Process Engineering Model (SPEM) standards initiative and is a member of the UML 2.0 review team. In July 2001, Professor Henderson-Sellers was awarded a Doctor of Science (D.Sc.) from the University of London for his research contributions in object-oriented methodologies.  相似文献   

17.
Much progress has been made in distributed computing in the areas of distribution structure, open computing, fault tolerance, and security. Yet, writing distributed applications remains difficult because the programmer has to manage models of these areas explicitly. A major challenge is to integrate the four models into a coherent development platform. Such a platform should make it possible to cleanly separate an application’s functionality from the other four concerns. Concurrent constraint programming, an evolution of concurrent logic programming, has both the expressiveness and the formal foundation needed to attempt this integration. As a first step, we have designed and built a platform that separates an application’s functionality from its distribution structure. We have prototyped several collaborative tools with this platform, including a shared graphic editor whose design is presented in detail. The platform efficiently implements Distributed Oz, which extends the Oz language with constructs to express the distribution structure and with basic primitives for open computing, failure detection and handling, and resource control. Oz appears to the programmer as a concurrent object-oriented language with dataflow synchronization. Oz is based on a higher-order, state-aware, concurrent constraint computation model. Seif Haridi, Ph.D.: He received his Ph.D. in computer science in 1981 from the Royal Institute of Technology, Sweden. After spending 18 months at IBM T. J. Watson Research Center, he moved to the Swedish Institute of Computer Science (SICS) to form a research lab on logic programming and parallel systems. Dr. Haridi is currently the research director of the Swedish Institute of Computer Science. He has been an active researcher in the area of logic and constraint programming and parallel processing since the beginning of the eighties. His earlier work includes contributions to the design of SICStus Prolog, various parallel Prolog systems and a class of scalable cache-coherent multiprocessors known as Cache-Only Memory Architecture (COMA). During the nineties most of his work focused on the design of multiparadigm programming systems based on Concurrent Constraint Programming (CCP). Currently, he is interested in programming systems and software methodology for distributed and agent-based applications. Peter Van Roy, Ph.D.: He obtained an engineering degree from the Vrije Universiteit Brussel (1983), Masters and Ph.D. degrees from the University of California at Berkeley (1984, 1990), and the Habilitation à Diriger des Recherches from Paris VII Denis Diderot (1996). He has made major contributions to logic language implementation. His research showed for the first time that Prolog can be implemented with the same execution efficiency as C. He was principal developer or codeveloper of Aquarius Prolog, Wild_Life, Logical State Threads, and FractaSketch. He joined the Oz project in 1994 and is currently working on Distributed Oz. His research interests are motivated by the desire to provide increased expressivity and efficiency to application developers. Per Brand: He is a researcher at the Swedish Institute of Computer Science. He has previously worked on the design and implementation of OR-parallel Prolog (the Aurora project) and optimized compilation techniques for Concurrent Constraint Programming Languages (in particular, AKL). He has been a member of the Distributed Oz design team since the project began. His research interests are focused on techniques, languages, and methodology for distributed programming. Christian Schulte: He studied computer science at the University of Karlsruhe, Germany, from 1987 to 1992 where he received his diploma. Since 1992 he has been a member of the Programming Systems Lab at DFKI. He is one of the principal designers of Oz. His research interests include design, implementation, and application of concurrent and distributed programming languages as well as constraint programming.  相似文献   

18.
The paper is about some families of rewriting P systems, where the application of evolution rules is extended from the classical sequential rewriting to the parallel one (as, for instance, in Lindenmayer systems). As a result, consistency problems for the communication of strings may arise. Three variants of parallel rewriting P systems (already present in the literature) are considered here, together with the strategies they use to face the communication problem, and some parallelism methods for string rewriting are defined. We give a survey of all known results about each variant and we state some relations among the three variants, thus establishing hierarchies of parallel rewriting P systems. Various open problems related to the subject are also presented. Danicla Besozzi: She is assistant professor at the University of Milano. She received her M.S. in Mathematics (2000) from the University of Como and Ph.D. in Computer Science (2004) from the University of Milano. Her research interests cover topics in Formal Language Theory, Molecular Computing, Systems Biology. She is member of EATCS (European Association for Theoretical Computer Science) and EMCC (European Molecular Computing Consortium). Giancarlo Mauri: He is full professor of Computer Science at the University of Milano-Bicocca. His research interests are mainly in the area of theoretical computer science, and include: formal languages and automata, computational complexity, computational learning theory, soft computing techniques, cellular automata, bioinformatics and molecular computing. On these subjects, he published more than 150 scientific papers in international journals, contributed volumes and conference proceedings. Claudio Zandron: He received Ph.D. in Computer Science at the University of Milan, Italy, in 2001. Since 2002 he is assistant professor at the University of Milano-Bicocca, Italy. He is member of the EATCS (European Association for Theoretical Computer Science) and of EMCC (European Molecular Computing Consortium). His research interests are Molecular Computing (DNA and Membrane Computing) and Formal Languages.  相似文献   

19.
“Drivers’ Information Assistance System (DIA system)” is an ITS (Intelligent Transport Systems) application framework that provides agent-based information assistance to drivers through car navigation systems or on-board PCs. DIA system enables flexible information retrieval over the Internet using intelligent mobile agent, and incorporates a high-speed event delivery facility that makes real-time information service possible. The goal of the system is to provide up to the minute information and services related to driver needs, such as parking lot vacancy information. Crucial to making this a practical operation is the agent-based ability to access the network while the vehicle is in motion. Masanori Hattori: He is a research engineer in the Computer & Network Systems Laboratory, Corporate Research & Development Center, Toshiba Corporation. His research interests are network computing, human interface, and agent technologies especially in mobile agents, intelligent agents, and physical agents. He received the B.E. and M.E. from the Kyushu University. Naoki Kase: He received the M.S. in computer science from the Keio University, Japan. His research interests are mobile agent and its applications. He has developed an intelligent mobile agent system and its applications on ITS (Intelligent Transport Systems) field. Akihiko Ohsuga, Dr. Eng.: He is a senior research scientist at the Computer & Network Systems Laboratory in Toshiba Corporation. Dr. Ohsuga received a B.S. degree in mathematics from Sophia University in 1981 and a Dr. Eng. degree in electrical engineering from Waseda University in 1995. He joined Toshiba Corporation in 1981, worked with the ICOT (institute for New Generation Computer Technology) involved in the Fifth Generation Computer System project from 1985 to 1989. His research interests include agent technologies, formal specification & verification, and automated theorem proving. Shinichi Honiden, Dr.Eng.: He is a chief specialist of Government Division, Toshiba Corporation. He received the B.S., M.S., and Dr. Eng. degrees in electrical engineering from Waseda University, Tokyo, Japan, in 1976, 1978, and 1986, respectively. Since 1978, he has been with Toshiba Corporation. His research interests include software engineering and artificial intelligence. In these fields, he is the author or coauthor of ten textbooks and has published over 80 technical papers.  相似文献   

20.
Summary This paper describes an algorithm for coloring the nodes of a planar graph with no more than six colors using a self-stabilizing approach. The first part illustrates the coloring algorithm on a directed acyclic version of the given planar graph. The second part describes a selfstabilizing algorithm for generating the directed acyclic version of the planar graph, and combines the two algorithms into one. Sukumar Ghosh received his Ph.D. degree in Computer Science from Calcutta University in 1971. From 1969 to 1984, he taught at Jadavpur University, Calcutta. During 1976–77, he was a Fellow of the Alexander von Humboldt Foundation at the University of Dortmund, Germany. Since 1984, he is with the Department of Computer Science of the University of Iowa. His current research interests are in the areas of Distributed Systems, Petri Nets and Self-Stabilizating Systems. Mehmet Hakan Karaata received the Sc. B. degree in Computer Science and Engineering from Hacettepe University in Turkey in 1987, and the M.S. degree in Computer Science from the University of Iowa in 1990. He is currently studying towards his Ph.D. at the same university. His research interests are in the areas of Distributed Systems, Self-Stabilizing Systems and Database Systems.This research was supported in part by the National Science Foundation under grant CCR-9109078, and the Old Gold Summer Fellowship of the University of Iowa. An abstract of this paper was presented at the 29th Allerton Conference on Control, Communication & Computing in October 1991.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号