首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
ELID 超精密磨削砂轮表面氧化膜形成过程的建模和仿真   总被引:1,自引:0,他引:1  
砂轮表面氧化膜的形成规律与特性对ELID超精密磨削质量有着重要的影响。为了研究在ELID磨削中氧化膜的形成规律,基于电化学基本原理,建立了砂轮表面氧化膜形成过程的一般模型,并对金刚石砂轮电解预修整过程中氧化膜的生长过程进行了仿真。在此基础上,对控制氧化膜生长的主要因素进行了理论分析。为了验证模型和仿真结果的正确性,采用与仿真过程同样的控制参数,对氧化膜的生长特性进行了实验研究。结果表明仿真结果与实验结果基本吻合。  相似文献   

2.
在线电解修整(ELID)磨削过程中砂轮表面会生成一层具有一定厚度的氧化膜,其刚度远小于工件及砂轮结合剂的刚度,可以有效衰减磨削过程中的振动。将ELID技术应用到无心内圆磨削中,通过调节电解参数来改变氧化膜的状态,进而对砂轮径向振动进行控制。通过试验研究了电解参数的改变对砂轮径向振动的影响规律,并基于此规律设计了控制器,对磨削过程中的砂轮径向振动进行了主动控制磨削试验。试验结果表明,该控制器可以将磨削过程中的砂轮径向振动控制在设定值附近,维持ELID磨削的稳定。在实际的ELID内圆磨削中,可以先将砂轮径向振动控制在较高值,以实现较大的材料去除率;一段时间后再将砂轮径向振动控制在较低值,以提高工件表面质量。  相似文献   

3.
在线电解修整磨削(ELID)是一种电化学加工技术,可在磨削过程中对铸铁基砂轮进行连续修整,非常适合硬脆材料的超精密镜面加工.在ELID磨削过程中,砂轮表面氧化膜的状态对ELID磨削影响重大,在磨削过程中维持良好的氧化膜状态是获良好表面质量的前提保证.本文通过粘附性实验,建立了氧化膜的状态归一化模型,利用在ELID磨削过...  相似文献   

4.
在ELID磨削原理的基础上,分析了ELID磨削过程中氧化膜的生成和作用机理以及氧化膜的生长规律;综合评述了氧化膜厚度的离线测量方式以及用ELID磨削加工过程中的电压电流值的大小间接表征氧化膜的状态的最新进展。同时提出了基于LabVIEW开发平台,利用激光位移传感器和电涡流位移传感器的组合在线直接测量氧化膜的厚度的方法。  相似文献   

5.
微处理器为处理控制单元,通过ELID精密磨削技术对金属基砂轮进行在线修整,改变砂轮氧化膜厚度,从而调整ELID磨削状态.该方案自动处理数据,判断磨削膜厚状态,改变电解电源参数,使砂轮始终保持锋利状态.此方法实现磨削过程无人控制,砂轮连续自动修整,消除传统磨削加工停机修整砂轮的弊端,提高磨削效率,减少砂轮过快损耗.  相似文献   

6.
通过Labview对试验中电压电流的测试,用VHX-2000超景深显微镜对氧化膜进行观测,分析了超声ELID复合磨削电参数与砂轮表面氧化膜之间的关系。研究结果表明,电参数的选择决定了砂轮结合剂发生电解反应溶解去除的速度以及砂轮表面生成氧化膜的厚度,进而影响砂轮的磨削性能和工件的磨削质量。  相似文献   

7.
在线电解修整(ELID)镜面磨削加工中,电解作用会使砂轮表面生成一层具有绝缘作用的氧化膜,该氧化膜可以减缓和阻止进一步电解,避免砂轮损耗过快;同时,氧化膜可容纳、承托大量因电解而脱落的磨粒,使得砂轮的磨削类同游离磨粒的研磨、抛光作用,有利于提高磨削表面质量。氧化膜在整个磨削过程中发挥着至关重要的作用,直接影响着ELID磨削加工表面质量和磨削效率。详细阐述了ELID磨削过程中氧化膜的成膜过程及表征方法、氧化膜的物理/化学特性、氧化膜成膜影响因素等方面的研究进展,并对ELID磨削氧化膜下一步的研究重点进行了展望。  相似文献   

8.
塑性材料专用ELID磨削金属结合剂砂轮的研制   总被引:1,自引:0,他引:1  
本文在已有通用型ELID磨削用金属结合剂砂轮的基础上,根据塑性材料磨削的特点和ELID磨削过程特点以及在ELID磨削过程中砂轮电解修锐作用及生成钝化膜的效应,通过调整合金中各种成分的搭配比例,适量地增添四氧化三铁,使其有良好的电解成膜特性,优化出专用ELID磨削砂轮(BJUTL-SXI型)。  相似文献   

9.
通过实验,分析了电源参数与氧化锆陶瓷ELID高速磨削表面粗糙度之间的关系。研究结果表明,电源参数的选择决定了砂轮结合剂发生电解反应溶解去除的速度以及砂轮表面生成氧化膜的质量,进而影响砂轮的磨削性能和工件的磨削质量。  相似文献   

10.
通过实验,分析了电源参数与氧化锆陶瓷ELID高速磨削表面粗糙度之间的关系。研究结果表明,电源参数的选择决定了砂轮结合剂发生电解反应溶解去除的速度以及砂轮表面生成氧化膜的质量,进而影响砂轮的磨削性能和工件的磨削质量。  相似文献   

11.
利用模压成型技术和真空钎焊技术制备出了磨粒把持力大、力学性能优良的多层钎焊金刚石砂轮;采用在线电解修整技术促使磨钝的磨粒及时脱落,使砂轮在磨削过程中始终保持锋利性;并开展了基于多层钎焊金刚石砂轮在线电解修整技术的超细晶硬质合金精密磨削试验。试验结果表明:在相同磨削条件下,多层钎焊砂轮在线电解修整磨削力较无修整时的磨削力下降了33.7%~57.9%;多层钎焊砂轮在线电解修整磨削技术能有效提高加工表面质量。当进给速度为30 mm/s,磨削深度为15 μm时,无电解磨削加工表面粗糙度为0.35 μm,而在线电解修整磨削表面粗糙度仅为82.1 nm;多层钎焊砂轮在线电解修整磨削残余应力仅为无电解磨削时的38.2%~49.5%。且在线电解修整磨削表面完整性较好,没有出现表面/亚表面裂纹等相关缺陷,可实现超细晶硬质合金等难加工材料的高效精密加工。  相似文献   

12.
ELID镜面磨削中砂轮生成氧化膜特性及其作用的研究   总被引:12,自引:0,他引:12  
研究砂轮电解氧化膜的粘附强度、硬度、致密性、导电性和生成速度等物理特性与砂轮结合剂成分、磨削液成分和电解参数的关系,并分析氧化膜在ELID磨削中的作用。  相似文献   

13.
ELID镜面磨削砂轮氧化膜生成机理   总被引:3,自引:0,他引:3  
采用铸铁结合剂微细超硬磨料砂轮进行在线电解修整磨削时,ELID砂轮表面产生的氧化膜起着极其重要的作用。研究了ELID砂轮电解氧化膜的粘附强度、硬度、致密性、导电性、生成速度与砂轮结合剂成分、磨削液成分和电解参数的关系。  相似文献   

14.
SUS304不锈钢具有高耐腐耐磨性和良好的综合性能而被广泛应用,但其高韧性和低导热性使传统的SUS304不锈钢磨削或车削工艺存在一定困难。在线电解修整ELID(Electrolytic in-process dressing)磨削技术能有效地用于SUS304不锈钢镜面磨削加工。本文主要对SUS304不锈钢进行ELID镜面磨削正交化实验研究以获得合理的工艺参数。首先利用#325砂轮进行7个影响因素2水平的正交磨削实验,获得初步的优化参数,然后利用#1200砂轮进行3个影响因素2水平的正交镜面磨削实验。通过改变削件砂轮转速、X和Y平台移动速度、进给率和ELID电源件等各种磨削条件,获得优化后的磨削工艺参数,进行了相应的磨削验证,并讨论了工艺参数对磨削特性的影响。研究了不同砂轮磨粒对表面粗糙度的影响,使用#8000金刚石砂轮对SUS304不锈钢镜面磨削,获得表面粗糙度Ra=3.6 nm。  相似文献   

15.
Metal-bonded superabrasive diamond grinding wheels have superior qualities such as high bond strength, high stability and high grindability. The major problems encountered are wheel loading and glazing, which impedes the effectiveness of the grinding wheel. Electrolytic in-process dressing (ELID) is an effective method to dress the grinding wheel during grinding. The wear mechanism of metal-bonded grinding wheels dressed using ELID is different form the conventional grinding methods because the bond strength of the wheel-working surface is reduced by electrolysis. The reduction of bond strength reduces the grit-depth-of-cut and hence the surface finish is improved. The oxide layer formed on the surface of the grinding wheel experiences macrofracture at the end of wheel life while machining hard and brittle workpieces. When the wheel wear is dominated by macrofracture, the wheel-working surface is free from loaded chips and worn diamond grits. When the oxide layer is removed from the wheel surface, the electrical conductivity of the grinding wheel increases, and that stimulates electrolytic dressing. The conditions applied to the pulse current influence the amount of layer oxidizing from the grinding wheel surface. Longer pulse ‘on’ time increases the wheel wear. Shorter pulse ‘on’ time can be selected for a courser grit size wheel since that type of wheel needs high grinding efficiency. Equal pulse ‘on’ and ‘off’ time is desired for finer grit size wheels to obtain stable and ultraprecision surface finish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号