首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Adsorption equilibria of paeoniflorin and albiflorin on a cyano-silica column(CN column) from the solution of supercritical carbon dioxide(scCO_2) modified with ethanol were studied. The adsorption capacity at 308.15 K,313.15 K, 318.15 K and 323.15 K under pressures corresponding to carbon dioxide/ethanol densities from0.347 g·cm~(-3) to 0.662 g·cm~(-3) were determined using the elution by characteristic point method(ECP). The effects of temperature and pressure on the solute loading were investigated. The results showed that the lower the temperature, the higher the adsorption capacity. With the decrease of density of scCO2, the adsorption capacity strengthens. The maximum adsorption capacity of paeoniflorin(albiflorin) on the CN column was15.24 mg·ml~(-1)(31.14 mg·ml~(-1)) in the range of 0–1.84 mg·ml~(-1)(0–1.67 mg·ml~(-1)) of paeoniflorin(albiflorin)standard solution. The adsorption capacity of albiflorin was twice as much as that of paeoniflorin under the same conditions. Adsorption data of paeoniflorin and albiflorin could be well described by the Langmuir model and Freundlich model. Compared with the two model fitting results, the adsorption of paeoniflorin and albiflorin belonged to the monolayer adsorption under conditions of 308.15–323.15 K and 10–17 MPa.  相似文献   

2.
Adsorption is an important process in wastewater treatment,and conversion of waste materials to adsorbent offers a solution to high material cost related to the use of commercial activated carbon.This study investigated the adsorption behaviour of Reactive Black 5(RB5)and methylene blue(MB)onto activated carbon produced from textile sludge(TSAC).The activated carbon was synthesized through chemical activation of precursor followed with carbonization at 650°C under nitrogen flow.Effects of time(0–200 min),pH(2–10),temperature(25–60°C),initial dye concentration(0–200 mg·L~(-1)),and adsorbent dosage(0.01–0.15 g)on dye removal efficiency were investigated.Preliminary screening revealed that TSAC synthesized via H_2SO_4activation showed higher adsorption behaviour than TSAC activated by KCl and ZnCl_2.The adsorption capacity of TSAC was found to be 11.98 mg·g~(-1)(RB5)and 13.27 mg·g~(-1)(MB),and is dependent on adsorption time and initial dye concentration.The adsorption data for both dyes were well fitted to Freundlich isotherm model which explains the heterogeneous nature of TSAC surface.The dye adsorption obeyed pseudo-second order kinetic model,thus chemisorption was the controlling step.This study reveals potential of textile sludge in removal of dyes from aqueous solution,and further studies are required to establish the applicability of the synthesized adsorbent for the treatment of waste water containing toxic dyes from textile industry.  相似文献   

3.
CaO-based sorbent is considered to be a promising candidate for capturing CO_2 at high temperature. However,the adsorption capacity of CaO decreases sharply with the increase of the carbonation/calcination cycles. In this study, CaO was derived from calcium acetate(CaAc_2), which was doped with different elements(Mg, Al,Ce, Zr and La) to improve the cyclic stability. The carbonation conversion and cyclic stability of sorbents were tested by thermogravimetric analyzer(TGA). The sorbents were characterized by N_2 isothermal adsorption measurements, scanning electron microscopy(SEM) and X-ray diffraction(XRD). The results showed that the cyclic stabilities of all modified sorbents were improved by doping elements, while the carbonation conversions of sorbents in the 1st cycle were not increased by doping different elements. After 22 cycles, the cyclic stabilities of CaO–Al, CaO–Ce and CaO–La were above 96.2%. After 110 cycles, the cyclic stability of CaO–Al was still as high as 87.1%. Furthermore, the carbonation conversion was closely related to the critical time and specific surface area.  相似文献   

4.
Mg ion-exchanged samples were prepared with acid-washed Shengli lignite. The chemical composition of the ash of the raw sample was determined by X-ray fluorescence. The equilibrium adsorption water contents of sam-ples were determined in a range of relative humidity. The ion-exchange process was characterized by FT-IR, ash content, and pH value. A possible mechanism is proposed for equilibrium adsorption water of ion-exchanged samples at different humidities. The extent of ion-exchange reaction between Mg2+and lignite is control ed by the concentration of Mg2+in MgSO4 solution. The effect of Mg2+on equilibrium adsorption water content varies with relative humidity and content of Mg2+. The factor that controls equilibrium adsorption water content at low relative humidity is water interactions with sorption sites, which are Mg2+–carboxyl group complex. At middle relative humidity capil ary force between Mg2+–water clusters Mg+(H2O)n and capil ary is more impor-tant. At high relative humidity, free water–free water interactions are more significant.  相似文献   

5.
A novel magnetic adsorbent was synthesized by magnetizing bentonite by APTES-Fe_3O_4 via a functional groupbridged interaction. The characterization of APTES-Fe_3O_4/bentonite was conducted via transmission electron microscope(TEM), X-ray diffraction(XRD), Fourier transform infrared spectrophotometer(FT-IR), thermal gravimetric analysis(TGA), vibrating sample magnetometer(VSM), zeta potential analysis and Brunner–Emmet–Teller(BET). The APTES-Fe_3O_4/bentonite was assessed as adsorbents for methylene blue(MB) with a high adsorption capacity(91.83 mg·g~(-1)). Factors affecting the adsorption of MB(such as p H, equilibrium time, temperature and initial concentration) were investigated. The adsorption process completely reaches equilibrium after 120 min and the maximum sorption is achieved at p H 8.0. The adsorption trend follows the pseudosecond order kinetics model. The adsorption data gives good fits with Langmuir isotherm model. The parameter factor RLfalls between 0 and 1, indicating the adsorption of MB is favorable. The adsorption process is endothermic with positive ΔH~0 values. The positive values of ΔG~0 confirm the affinity of the adsorbent towards MB, and suggest an increased randomness at the solid–liquid interface during the adsorption process. Regeneration of the saturated adsorbent was easily carried out via gamma-irradiation.  相似文献   

6.
In this report,Co-based catalysts supported on ZnO,Al_2O_3 and ZrO_2 as well as the ZrO_2 derived from different precipitants and different pH values were prepared by co-precipitation method.Their catalytic Fischer–Tropsch synthesis(FTS)performance was investigated in a fixed-bed reactor.The results revealed that Co catalyst supported on ZrO_2 exhibited better FTS catalytic performance than that supported on ZnO or Al_2O_3.For the Co/ZrO_2catalyst,different precipitants showed the following an activity order of NaOHNa_2CO_3NH_4OH,and the best pH value is 13.The catalysts were characterized by N_2adsorption–desorption,XRF,XRD,H_2-TPR,H_2-TPD and TEM.It was found that the main factor affecting the CO conversion of the catalyst was the amounts of low-temperature active adsorption sites.Moreover,the selectivity of C_5~+hydrocarbons had a positive relationship with the peak temperature of the weak hydrogen adsorption sites.The higher the peak temperature,the higher the C_5~+selectivity is.  相似文献   

7.
This research demonstrates the production of mesoporous activated carbon from sargassum fusiforme via physical activation with carbon dioxide. Central composite design was applied to conduct the experiments at different levels by altering three operating parameters. Activation temperature(766–934 ℃), CO_2 flow rate(0.8–2.8 L·min(~-1)) and activation time(5–55 min) were the variables examined in this study. The effect of parameters on the specific surface area, total pore volume and burn-out rate of activated carbon was studied,and the influential parameters of methylene blue adsorption value were identified employing analysis of variance. The optimum conditions for maximum methylene blue adsorption value were: activation temperature = 900 ℃, activation time = 29.05 min and CO_2 flow rate = 1.8 L·min(~-1). The activated carbon produced under optimum conditions was characterized by BET, FTIR and SEM. The adsorption behavior on congo red was studied. The effect of parameters on the adsorbent dosage, temperature, PH and initial congo red concentration was investigated. The adsorption properties of the activated carbon were investigated by kinetics. The equilibrium removal rate and maximum adsorption capacity reaches up to 94.72%, 234 mg·g-1,respectively when initial congo red concentration is 200 mg·L~(-1) under adsorbent dosage(0.8 g · L~(-1)),temperature(30℃), PH7.  相似文献   

8.
The effect of pyrolysis on the microstructure and moisture adsorption of lignite was investigated with low field nuclear magnetic resonance spectroscopy. Changes in oxygen-containing groups were analyzed by Fourier transform infrared spectroscopy(FTIR), and H2 O adsorption mechanism on the surface of lignite pyrolysis was inferred. Two major changes in the pore structure of lignite char were observed as temperature increased in 105–200 °C and500–700 °C. Pyrolysis temperature is a significant factor in removing carboxyl and phenolic hydroxyl from lignite.Variation of ether bond content can be divided into three stages; the content initially increased, then decreased,and finally increased. The equilibrium adsorption ratio, content of oxygen-containing groups, and variation of pore volume below 700° were closely correlated with each other. The amount of adsorbed water on char pyrolyzed at700 °C increased. Moreover, the adsorption capacity of the lignite decreased, and the adsorption state changed.  相似文献   

9.
Potassium promoted iron–zinc catalysts prepared by co-precipitation method(C–Fe–Zn/K),solvothermal method(S–Fe–Zn/K)and hydrothermal method(H–Fe–Zn/K)could selectively convert CO_2to light olefins,respectively.The physicochemical properties of the obtained catalysts were determined by SEM,N_2physisorption,XRD,H_2-TPR,CO_2-TPD and XPS measurements.The results demonstrated that preparation methods had great influences on the morphology,phase structures,reduction and adsorption behavior,and hence the catalytic performance of the catalysts.The samples prepared by hydrothermal and co-precipitation method generated small uniform particles and led to lower specific surface area.In contrast,microspheres with larger specific surface area were formed by self-assembly of nanosheets using solvothermal method.ZnFe_2O_4was the only detectable phase in the fresh C–2Fe–1Zn/K,S–3Fe–1Zn/K and S–2Fe–1Zn/K samples.ZnFe_2O_4and ZnO co-existed with increasing Zncontent in S–1Fe–1Zn/K sample,while ZnO and Fe_2O_3could be observed over H–2Fe–1Zn/K sample.All the used samples contained Fe_3O_4,ZnO and Fe_5C_2.The peak intensity of ZnO was strong in the AR-H–2Fe–1Zn/K sample while it was the lowest in the AR-C–2Fe–1Zn/K sample after reaction.The formation of ZnFe_2O_4increased the interaction between iron and zinc for C–2Fe–1Zn/K and S–Fe–Zn/K samples,causing easier reduction of Fe_2O_3to Fe_3O_4.The surface basicity of the sample prepared by co-precipitation method was much more than that of the other two methods.During CO_2hydrogenation,all the catalysts showed good activity and olefin selectivity.The CO selectivity was increased with increasing Zncontent over S–Fe–Zn/K samples.H–2Fe–1Zn/K catalyst preferred to the production of C_5~+hydrocarbons.CO_2conversion of 54.76%and C_2~=–C_4~=contents of 57.38%were obtained on C–2Fe–1Zn/K sample,respectively.  相似文献   

10.
Membrane fouling is a major problem in membrane bioreactors(MBRs). In this study, membrane fouling caused by membrane rejection and adsorption was study. Filtration tests indicated that membrane rejected SMP, causing membrane pore blockage and then forming a gel layer. Batch adsorption experiments showed that adsorption of SMP onto PVDF membrane was a spontaneous physical adsorption process.Meanwhile, the absolute value ΔG of adsorption of SMP onto D3520 was higher than that of adsorption of SMP onto PVDF membrane, so SMP preferentially adsorbed onto D3520 rather than PVDF membrane. Thus, the effect of ARs on reducing the SMP concentration was investigated. It was found that, 6 g of D3520 was suitable for adsorption of SMP. This physical adsorption involved external film diffusion, intra-particle diffusion, and surface adsorption. The Redlich–Peterson isotherm model performed best in terms of describing this equilibrium data. The mechanism of membrane fouling mitigation was verified by MBR simulation system. A case study of AR–MBR system was conducted. The results showed that addition of D3520 can effectively alleviate the development of membrane fouling.  相似文献   

11.
Novel composite magnetic microspheres containing chitosan and quaternary ammonium chitosan derivative (CHMMs) were prepared by inverse suspension method, and used for the methyl orange (MO) removal from aqueous solutions. The CHMMs were characterized by a scanning electron microscope, a transmission electron microscope, and Fourier transform infrared spectroscopy, respectively. Compared with the chitosan beads, the incorporation of quaternary ammonium chitosan derivative significantly reduced the particle size. The MO adsorption by CHMMs was investigated by batch adsorption experiments. The adsorption kinetics was conformed to the pseudo second-order kinetics equation. The adsorption isotherm followed the Langmuir model better than the Freundlich model and the calculated maximum MO adsorption capacity was 266.6 mg·g-1 at 293 K. Thermodynamic studies indicated that the MO adsorption was endothermic in nature with the enthalpy change (ΔH°) of 99.44 kJ·mol-1. The CHMMs had a stable performance for MO adsorption in the pH range of 4-10, but high ionic strength deteriorated the MO removal due to the shielding of the ion exchange interaction. A 1 mol·L-1 NaCl solution could be used to regenerate the exhausted CHMMs. The proposed CHMMs can be used as an effective adsorbent for dye removal or recovery from the dye wastewater.  相似文献   

12.
Water contamination caused by hazardous organic dyes has drawn considerable attention, among all of the techniques released, adsorption has been widely used, which however to a large degree is dependent on the development of high efficiency adsorbents. Waste biomass based porous carbon is becoming the new star class of adsorbents, and thus contribute more to the sustainable development of the society. In this work, for the first time to the best of our knowledge, abundant waste fallen Platanus orientalis leaves are employed as the raw material for hierarchical activated porous carbon(APC) microspheres via a mild hydrothermal carbonization(210 °C,12.0 h) followed by one-step calcination(750 °C, 1.0 h). The APC microspheres exhibit a specific surface area of1355.53 m~2·g~(-1) and abundant functional groups such as O—H and C=O. Furthermore, the APC microspheres are used as the adsorbents for removal of Rh B and MO, with the maximum adsorption capabilities of 557.06 mg·g~(-1) and 327.49 mg·g~(-1), respectively, higher than those of the most porous carbon originated from biomass. The adsorption rates rapidly approach to 98.2%(Rh B) and 95.4%(MO) within 10 min. The adsorption data can be well fitted by Langmuir isotherm model and the pseudo-second-order kinetic model, meanwhile the intra-particle diffusion and Boyd models simultaneously indicate that the diffusion within the pores is the main rate-limiting step. Besides, the APC microspheres also demonstrate good recyclability, and may also be applied to other areas such as heterogeneous catalysis and energy storage.  相似文献   

13.
The utilization of coal fly ash derived from circulating fluidized bed combustion(CFBFA) still faces great challenges because of its unique characteristics. In this study, a zeolitic material with Na-P1 zeolite as the main phase was successfully synthesized via a hydrothermal method by using CFBFA as the raw material.The effects of hydrothermal temperature, time, and added CTAB amount on the characterizations of synthesized materials were investigated by XRD, SEM, and XPS. The properties of the ...  相似文献   

14.
张书泉  徐敏  王国滔 《化工进展》2021,40(8):4600-4609
具有高吸附、强降解、易回收特性的新型功能材料在治理水中有机污染物上具有广泛的应用前景。本研究以多孔Ti基MOF材料NH2-MIL-125(Ti)为前体,通过后修饰方法在孔洞中引入Co2+,再通过高温炭化制备得到Co3O4/TiO2/多孔炭复合材料,并通过多种手段对复合材料进行了表征。实验用甲基橙模拟水中有机污染物,研究了复合材料对甲基橙的吸附性能、光催化降解性能及回收再利用能力。研究结果表明复合材料对甲基橙的吸附过程符合准二级动力学方程,其吸附能力随着复合材料中Co3O4含量先增加后减小,C120(5.23% Co3O4/48.72%TiO2/多孔炭)具有最强的平衡吸附量,达到273.22mg/gsample。同时该样品对甲基橙也具有较强的光催化降解能力,并且由于Co3O4的强磁性,可以很容易地通过外磁场从水中分离。本工作为应用于有机废水处理的新型功能材料的开发提供了实验依据。  相似文献   

15.
In this work, the feasibility of using a macroporous strong acid ion exchange resin (D72) as an adsorbent for praseodymium (Ⅲ) was examined. The adsorption behavior and mechanism were investigated with various chemical methods and IR spectrometry. The results showed that the loading of Pr (III) ions was strongly dependent on pH of the medium and the optimal adsorption condition is in HAc-NaAc medium with pH value of 3.0. Adsorption kinetics of Pr (III) ions onto D72 resin could be best described by pseudo-second-order model. The maximum adsorption capacity of D72 for Pr (Ⅲ) was evaluated to be 294 mg·g 1 for the Langmuir model at 298K. The apparent activation energy, E a , was 14.71 kJ·mol 1 . The calculated data of thermodynamic parameters, ΔSΘ value of 100 J·mol 1 ·K 1 and ΔHΘ value of 8.89 kJ·mol 1 , indicate the endothermic nature of the adsorption process, while a decrease of ΔGΘ with increasing temperature indicates the spontaneous nature of the adsorption process. Finally, Pr (Ⅲ) can be eluted by using 1.00 mol·L 1 HCl-0.50 mol·L 1 NaCl solution and the D72 resin can be regenerated and reused. Thomas model was successfully applied to experimental data to predict the breakthrough curves and to determine the characteristic parameters of the column useful for process design. The characterization before and after adsorption of Pr (Ⅲ) ions on D72 resin was conformed by IR.  相似文献   

16.
Deterioration and loss of quality of vegetable oil is a big challenge in the food industry. This study investigated the synthesis of nickel ferrite (NiFe2O4) via co-precipitation method and its use for the removal of free fatty acids (FFAs) in deteriorated vegetable oil. NiFe2O4 was characterized using Fourier transformed infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric (TG) analysis, Brunauer–Emmett–Teller (BET) surface area, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Synthesis of NiFe2O4 was confirmed by characterization, which revealed a BET surface area of 16.30 m2·g-1 and crystallite size of 29 nm. NiFe2O4 exhibited an adsorption capacity of 145.20 L·kg-1 towards FFAs with an 80.69% removal in a process, which obeys Langmuir isotherm and can be described by the pseudo-second-order kinetic model. The process has enthalpy (ΔH) of 11.251 kJ·mol-1 and entropy (ΔS) of 0.038 kJ·mol-1·K-1 with negative free energy change (ΔG), which suggests the process to be spontaneous and endothermic. The quantum chemical computation analysis via density functional theory further revealed the sorption mechanism of FFAs by NiFe2O4 occurred via donor–acceptor interaction, which may be described by the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO). The study showed NiFe2O4 to be a potential means that can remove FFAs from deteriorated vegetable oil.  相似文献   

17.
MXenes have attracted increasing research enthusiasm owing to their unique physical and chemical properties. Although MXenes exhibit exciting potential in cations adsorption due to their unique surface groups, the adsorption capacity is limited by the low specific surface area and undeveloped porosity. Our work aims at enhancing the adsorption performance of a well-known MXene, Ti3C2Tx, for methylene blue (MB) by decorating tiny ZIF-8 nanoparticles in the interlayer. After the incorporation of ZIF-8, suitable interspace in the layers resulting from the distribution of tiny ZIF-8 appears. When employing in MB, the adsorption capacity of composites can reach up to 107 mg·g-1 while both ZIF-8 (3 mg·g-1) and Ti3C2Tx (9 mg·g-1) show nearly no adsorption capacity. The adsorption mechanism was explored, and the good adsorption capacity is caused by the synergistic effect of ZIF-8 and Ti3C2Tx, for neither of them is of suitable interspace or surface groups for MB adsorption. Our work might pave the way for constructing functional materials based on the introduction of nanoparticles into layered materials for various adsorption applications.  相似文献   

18.
Metal-organic frameworks (MOFs) have great potentials as adsorbents for natural gas purification. However, the trade-off between selectivity and adsorption capacity remains a challenge. Herein, we report a pillared-layer metal-organic framework Ni(HBTC)(bipy) for efficiently separating the C3H8/C2H6/CH4 mixture. The experimental results show that the adsorption capacity of C3H8 and C2H6 on Ni(HBTC)(bipy) are as high as 6.18 and 5.85 mmol·g-1, while only 0.93 mmol·g-1 for CH4 at 298 K and 100 kPa. Especially, the adsorption capacity of C3H8 at 5 kPa can reach an unprecedented 4.52 mmol·g-1 and for C2H6 it is 1.48 mmol·g-1 at 10 kPa. The ideal adsorbed solution theory predicted C3H8/CH4 selectivity is as high as 1857.0, superior to most of the reported materials. Breakthrough experiment results indicated that material could completely separate the C3H8/C2H6/CH4 mixture. Therefore, Ni(HBTC)(bipy) is a promising material for separation of natural gas.  相似文献   

19.
The separation of Ca2+ and Mg2+ ions from phosphoric acid-nitric acid aqueous solution is very significant for the neutralization process of nitrophosphate fertilizer. This paper studied the adsorption equilibrium, kinetics, and dynamic separation of Ca2+ and Mg2+ ions by strong acid cation resin, and the effects of phosphoric acid and nitric acid on the adsorption process were investigated. The results reveal that the adsorption process of Ca2+ and Mg2+ ions in pure water on resin is in good agreement with the Langmuir isotherm model and their maximal adsorption capacities are 1.86 mmol·g-1 and 1.83 mmol·g-1, respectively. The adsorption kinetics of Ca2+ and Mg2+ ions on resin fits better with the pseudo-first-order model, and the adsorption equilibrium in pure water is reached within 10 min contact time, while at the present of phosphoric acid, the adsorption rate of Ca2+ and Mg2+ ions on resin will go down. The dynamic separation experiments demonstrate that the designed column adsorption is able to undertake the separation of metal ions from the mix acids aqueous solution, but the dynamic operation should control the flow rate of mix acid solution. Besides nitric acid solution was proved to be effective to completely regenerate the spent resin and achieve the recyclable operation of separation process.  相似文献   

20.
A spray-drying assisted solid-state method to prepare spherical layer-structured H2TiO3 ion sieve (LSTIS) particles is reported herein. The effects of synthesis parameters (calcination temperature, calcination time, and the lithium-titanium molar ratio) on adsorption–desorption performance (the delithiation ratio, titanium dissolution loss, and the adsorption capacity) were investigated. The as-prepared LSTIS exhibited an equilibrium adsorption capacity of 30.08 mg·g-1 (average of 25.85 mg·g-1 over 5 cycles) and ultra-low titanium dissolution loss of less than 0.12% (average of 0.086% over 5 cycles). The LSTIS showed excellent selectivity toward Li+ in Na+, K+, Mg2+, and Ca2+ coexisting saline solutions where its adsorption capacity reached 27.45 mg·g-1 and the separation factors of Li+ over the coexisting cations exceeded 100. The data suggests that the LSTIS is promising to competitively enrich Li+ from saline solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号