首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The carbon additions in the pressureless sintering of SiC are commonly used for the removal of SiO2 layers on the starting powders. In practice, it is common to add more C than is necessary for stoichiometric removal to ensure a complete deoxidation. As a result, inclusions of excess free C are a general feature of the microstructure of sintered SiC. This phenomenon was studied by high-resolution Auger electron spectroscopy on ultra-high-vacuum-exposed fracture surfaces as well as by high-resolution transmission electron microscopy of B- and C-doped materials.  相似文献   

2.
裴立宅 《佛山陶瓷》2007,17(4):37-41
本文综述了国内外碳化硼粉末和碳化硼陶瓷制备技术的研究现状与进展情况,重点介绍了碳管炉、电弧炉碳热还原法、自蔓延高温合成法、激光诱导化学气相沉积法、溶胶凝胶碳热还原法合成碳化硼粉末以及热压、热等静压、无压烧结、放电等离子烧结和反应烧结制备碳化硼陶瓷的研究进展。  相似文献   

3.
Pressureless Sintering of Boron Carbide   总被引:4,自引:0,他引:4  
B4C powder compacts were sintered using a graphite dilatometer in flowing He under constant heating rates. Densification started at 1800°C. The rate of densification increased rapidly in the range 1870°–2010°C, which was attributed to direct B4C–B4C contact between particles permitted via volatilization of B2O3 particle coatings. Limited particle coarsening, attributed to the presence or evolution of the oxide coatings, occurred in the range 1870°–1950°C. In the temperature range 2010°–2140°C, densification continued at a slower rate while particles simultaneously coarsened by evaporation–condensation of B4C. Above 2140°C, rapid densification ensued, which was interpreted to be the result of the formation of a eutectic grain boundary liquid, or activated sintering facilitated by nonstoichiometric volatilization of B4C, leaving carbon behind. Rapid heating through temperature ranges in which coarsening occurred fostered increased densities. Carbon doping (3 wt%) in the form of phenolic resin resulted in more dense sintered compacts. Carbon reacted with B2O3 to form B4C and CO gas, thereby extracting the B2O3 coatings, permitting sintering to start at ∼1350°C.  相似文献   

4.
采用HCl溶解质量法测定铝基碳化硼材料中碳化硼的含量。对称样量、水浴温度等实验条件进行了优化,并验证了方法的精密度和准确度。结果表明,质量法测定铝基碳化硼材料中碳化硼的含量,简单、快速,精密度高,结果准确可靠,可用于批量样品测试。  相似文献   

5.
The synthesis of calcium hexaboride (CaB6) powder via the reaction of calcium carbonate (CaCO3) with boron carbide (B4C) and carbon has been investigated systematically in the present study. The influences of heating temperature and holding time on the reaction products have been studied using X-ray diffractometry, and the morphologies of CaB6 obtained at various temperatures and holding times have been investigated via scanning electron microscopy. The interaction in the CaCO3–B4C–carbon system by which CaB6 is formed is a solid-phase process that passes through the transition phases Ca3B2O6 and CaB2C2. The optimal conditions for CaB6 synthesis are a holding time of 2.5 h at a temperature of 1673 K, under vacuum (a pressure of 10−2 Pa). CaB6 powder has the same morphology as B4C, and the properties and the shape of CaB6 powders can be improved by choosing good-quality raw materials.  相似文献   

6.
Hydrogen gas (H2) was used to extract B2O3 coatings from boron carbide (B4C) particles, permitting a lower temperature onset of sintering and restricting coarsening via solution and precipitation of B4C in B2O3 liquid. Remnant H2 had to be removed from the furnace before specimens were heated through temperature ranges in which evaporation-condensation coarsening competed with sintering (2010°–2140°C), because the presence of H2 increased the B4C vapor pressure. Heat treatment of B4C compacts in a 50:50 H2-He mixture at 1350°C, followed by a purge of the H2 gas and then rapid heating to 2230°C, resulted in a percentage of theoretical density of 94.7%. This is higher than the value of 92.8%, which was the highest achieved without the use of H2.  相似文献   

7.
硼酐碳热法合成碳化硼的研究   总被引:2,自引:0,他引:2  
用X-射线衍射分析方法,研究了温度及反应物中B2O3摩尔量对碳热合成B4C粉末中残留含量的影响,同时探讨其反应机理,实验表明,碳化硼粉末中的残留碳含量不仅取决于反应而且与B2O3的摩尔量有关。在碳管炉内合成B4C的反应以液固反应为主,在反应时间一定条件下B2O3摩尔量为5-6mol的反应物料,在1650℃Ar气氛中反应,其残留碳含量最低,其相对量为10%左右。  相似文献   

8.
Plasma oxidation combined with emission monitoring was applied to the quantitative analysis of free carbon in ZrC powder. The emission was monitored with an optical color analyzer and was calibrated with standard samples of ZrO2+ C mixtures. Oxidation rates of the free and the combined carbons are so different that it is possible to estimate the amount of the former from the emission. No chemical treatment is necessary.  相似文献   

9.
The mechanical properties of alumina have been successfully improved by adding isolated boron carbide particles of two different shapes. A K Ic of 7.26 ± 0.20 MPa · m1/2 for alumina—boron carbide whiskerlike composites and of 5.27 ± 0.12 MPa · m1/2 alumina—boron carbide shardlike particle composites has been achieved. The fracture toughness of these composites is dependent on the volume fraction of the boron carbide particles as well as their size and shape. The flexural strength is also appreciably enhanced to a constant value with from 5 to 20 vol% boron carbide additions. The whiskerlike particles increase the flexural strength by 25% and the shardlike particles produce a 47% improvement.  相似文献   

10.
王彦顺 《辽宁化工》2014,(7):880-882
介绍了碳化硼合成工艺的三种合成方法,重点论述了工业上生产碳化硼主要采用的碳热还原法。展示了碳化硼行业产业化的可喜前景。  相似文献   

11.
Microstructural Coarsening During Sintering of Boron Carbide   总被引:8,自引:0,他引:8  
The sintering behavior of boron carbide was investigated with particular attention given to microstructure development at various stages in the sintering process. Hot-pressing and pressureless sintering techniques were employed and the effects of heating rate, firing atmosphere, and composition were used to characterize the sintering behavior. Pressureless sintering at temperatures up to 2300°C produces only limited densification. Microstructural coarsening is responsible for this since it leads to conditions where densification is slow. Hot-pressing and carbon additions suppressed coarsening and permitted densification to >95% of theoretical density.  相似文献   

12.
Si3 N4 test bars containing additions of BN, B4C, and C, were hot isostatically pressed in Ta cladding at 1900° and 2050°C to 98.9% to 99.5% theoretical density. Room-temperature strength data on specimens containing 2 wt% BN and 0.5 wt% C were comparable to data obtained for Si3 N4 sintered with Y2O3, Y2O3 and Al2O3, or ZrO2. The 1370°C strengths were less than those obtained for additions of Y2O3 or ZrO2 but greater than those obtained from a combination of Y2O3 and Al2O3. Scanning electron microscope fractography indicated that, as with other types of Si3N4, roomtemperature strength was controlled by processing flaws. The decrease in strength at 1370°C was typical of Si3N4 having an amorphous grainboundary phase. The primary advantage of non-oxide additions appears to be in facilitating specimen removal from the Ta cladding.  相似文献   

13.
Detailed microstructural characterization was carried out on a commercial‐grade hot‐pressed boron carbide armor plate. The boron carbide grains have close to B4C stoichiometry, and most of them have no planar defects. The most prominent second phase is intergranular graphite inclusions that are surrounded by multiple boron carbide grains. Submicrometer intragranular and intergranular BN and AlN precipitates were also observed. In addition, fine dispersions of AlN nanoprecipitates were observed in some but not all grains. No intergranular films were found. These microstructural characteristics are compared with the lab‐consolidated boron carbide and their effects on the mechanical properties of boron carbide are addressed.  相似文献   

14.
碳化硼是高性能陶瓷材料中的一种重要原料,包含诸多的优良性能,除了高硬度、低密度等性能外,它还具备高化学稳定性和中子吸收截面及热电性能等特性,在国防军事设备、功能陶瓷、热电元件等诸多领域具有十分广泛的应用。本文重点介绍了碳化硼的相关性质、研究进展和应用现状。详细地介绍了碳化硼的制备方法,如电弧炉碳热还原法、自蔓延高温法、化学气相沉积法、溶胶-凝胶法等方法,并分析了它们的优缺点。  相似文献   

15.
以微米硅(Si)和纳米碳黑(Cp)粉体为主要原料,采用经机械化学法合成的碳化硅(SiC)和15%和25%的纳米碳颗粒与碳化硅(Cp-SiC)的复合粉体,并经无压烧结得到了Cp/SiC陶瓷基复合材料,分析了在不同温度条件下Cp/SiC烧结体的氧化行为。结果表明:当温度小于700℃时,Cp/SiC复合陶瓷在空气中的氧化受C—O2反应控制,致使其为均匀氧化;700℃时,氧化后的复合材料显气孔率最大,弯曲强度达极小值;大于700℃,氧化过程受O2的气相扩散控制,呈非均匀氧化;700~900℃之间,O2通过微裂纹的扩散控制着Cp/SiC的氧化过程;900~1 100℃之间,O2通过SiC缺陷的扩散控制着Cp/SiC的氧化过程,并在1 000℃时的最初的2 h内,复合材料弯曲强度增大,且达到了极大值。同时表明,纳米碳含量是影响复合材料强度及氧化行为的关键因素,添加纳米碳质量分数为15%的Cp/SiC复合陶瓷可以作为一种抗氧化性能优良的玻璃夹具材料。  相似文献   

16.
The effect of the amount of boron doping in the range of 0 to 1.0 wt% on the high-temperature deformation of fine-grained β-silicon carbide (SiC) was investigated by compression testing. Flow stress at the same grain size increased as the amount of boron doping decreased. The stress exponent increased from 1.3 to 3.4 as the amount of boron doping decreased. The strain rates of undoped SiC were ∼2 orders of magnitude lower than those of 1.0-wt%-boron-doped SiC of the same grain size. The apparent activation energies of SiC doped with 1.0 wt% boron and of undoped SiC were 771 ± 12 and 884 ± 80 kJ/mol, respectively. These results suggest that the actual contribution of grain-boundary diffusion to the accommodation process of grain-boundary sliding decreased as the amount of boron doping decreased. Consequently, the apparent contribution of the dislocation glide increased.  相似文献   

17.
Effects of microstructure and material properties on the mechanical behavior of hot‐pressed boron carbide are presented. The microstructure and intrinsic microstructural inhomogeneities have been characterized using scanning electron microscopy characterization techniques (SEM/EDS/EBSD). In situ mechanical characterizations of the boron carbide microstructure and its larger inhomogeneities have been performed by nanoindentation. Macroscopic dynamic and quasi‐static compressive responses have been studied in two characteristic orientations (parallel and perpendicular to the hot‐pressing direction) using a modified compression Kolsky bar setup (strain rates of /s) and standard MTS test machine (strain rates of /s). The microstructure characterization showed that boron carbide has a fine‐grained microstructure with a complex superposition of nonmetallic inclusions, such as free carbon, AlN, and BN. Nanoindentation tests conducted in three principal planes of the plate revealed an anisotropy of the mechanical properties. The compression tests revealed that the strength of this hot‐pressed boron carbide is orientation dependent. Detailed SEM analysis indicated transgranular fracture and microcracking originating at large carbon inclusions. Influences of microstructural anisotropy on the mechanical response of the material are discussed.  相似文献   

18.
An investigation into mechanical properties and amorphization behavior of ultrafine‐grained (0.3 μm) boron carbide (B4C) is conducted and compared to a baseline coarse‐grained (10 μm) boron carbide. Static and dynamic uniaxial compressive strength, and static and dynamic Vickers indentation hardness were determined, and Raman spectroscopy was then conducted on indented regions to quantify and compare the intensity of amorphization. In relation to coarse‐grained B4C the ultrafine‐grained material exhibited, on average, a 33% higher static compressive strength, 20% higher dynamic compressive strength, 10% higher static Vickers hardness, and 23% higher dynamic Vickers hardness. In addition, there was an 18% reduction in indentation‐induced radial crack length in ultrafine‐grained B4C, which corresponded to an increase in estimated fracture toughness. Although traditional coarse‐grained B4C exhibits an 8.6% decrease in hardness from the static to dynamic regimes, ultrafine‐grained B4C showed only negligible change under similar conditions, suggesting a reduced propensity for amorphization. Raman spectroscopic analysis confirmed this result by revealing significantly lower amorphization intensity in ultrafine‐B4C compared to coarse‐grained B4C. These results may have significant positive implications in the implementation of ultrafine‐grained boron carbide as a material for improved performance in impact and other high‐pressure applications.  相似文献   

19.
This work proposes a new approach, based on the reaction Si3N4+ 2B2O3+ 9C → 3SiC + 4BN + 6CO, to synthesize an SiC–BN composite. The composite was prepared by reactive hot pressing (RHP), at 2000°C for 60 min at 30 MPa under an argon atmosphere, following a 60 min hold at 1700°C without applied pressure before reaching the RHP temperature. TG-DTA results showed that a nitrogen atmosphere inhibited denitrification somewhat and retarded the reaction rate. The chemical composition of the obtained material was consistent with theoretical values. FE-SEM observation showed that in situ -formed SiC and BN phases were of spherical morphology with very fine particle size of ∼100 nm.  相似文献   

20.
This is a companion work to our previous study on the pressureless sintering of boron carbide (B4C). The Vickers hardness and indentation fracture toughness of B4C compacts were measured after various sintering heat treatments. Increases in hardness and decreases in indentation fracture toughness as the grain size decreased in sintered B4C were attributed to the effects of more rapid strain hardening associated with dislocation pileups at grain boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号