首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The theory of mass transport coupled to reversible protein interactions forms the basis for computer simulation of the isoelectric focusing behavior of several model systems. These include pH-dependent conformational transition, carrier ampholyte-induced interactions and protein-ligand interactions. The computational results compare favorably with experimental observations. In addition, a method is formulated for an isoelectric focusing procedure which enables determination of intrinsic ligand-binding constants for statistical binding of a charged ligand, binding to heterogeneous sites, and cooperative binding.  相似文献   

2.
For the functional role of the ribosomal tRNA exit (E) site, two different models have been proposed. It has been suggested that transient E-site binding of the tRNA leaving the peptidyl (P) site promotes elongation factor G (EF-G)-dependent translocation by lowering the energetic barrier of tRNA release [Lill, R., Robertson, J. M. & Wintermeyer, W. (1989) EMBO J. 8, 3933-3938]. The alternative "allosteric three-site model" [Nierhaus, K.H. (1990) Biochemistry 29, 4997-5008] features stable, codon-dependent tRNA binding to the E site and postulates a coupling between E and aminoacyl (A) sites that regulates the tRNA binding affinity of the two sites in an anticooperative manner. Extending our testing of the two conflicting models, we have performed translocation experiments with fully active ribosomes programmed with heteropolymeric mRNA. The results confirm that the deacylated tRNA released from the P site is bound to the E site in a kinetically labile fashion, and that the affinity of binding, i.e., the occupancy of the E site, is increased by Mg2+ or polyamines. At conditions of high E-site occupancy in the posttranslocation complex, filling the A site with aminoacyl-tRNA had no influence on the E site, i.e., there was no detectable anticooperative coupling between the two sites, provided that second-round translocation was avoided by removing EF-G. On the basis of these results, which are entirely consistent with our previous results, we consider the allosteric three-site model of elongation untenable. Rather, as proposed earlier, the E site-bound state of the leaving tRNA is a transient intermediate and, as such, is a mechanistic feature of the classic two-state model of the elongating ribosome.  相似文献   

3.
The parvalbumin metal ion-binding sites differ at the +z and -x residues: Whereas the CD site employs serine and glutamate (or aspartate), respectively, the EF site employs aspartate and glycine. Although frequently indistinguishable in Ca2+- and Mg2+-binding assays, the CD and EF sites nonetheless exhibit markedly different preferences for members of the lanthanide series [Williams et al. (1984) J. Am. Chem. Soc. 106, 5698-5702], underscoring an intrinsic nonequivalence. This nonequivalence reaches its pinnacle in the mammalian beta-parvalbumin (oncomodulin). Whereas the oncomodulin EF site exhibits the expected Ca2+/Mg2+ signature, the Ca2+ affinity of the CD site is severely attenuated. To obtain insight into the structural factors responsible for this reduction in binding affinity, oncomodulin variants were examined in which the CD and EF site ligand arrays had been exchanged. Our data suggest that binding affinity may be dictated either by ligand identity or by the binding site environment. For example, the Ca2+ affinity of the quasi-EF site resulting from the combined S55D and D59G mutations is substantially lower than that of the authentic EF site. This finding implies that other local environmental variables (e.g., binding loop flexibility, electrostatic potentials) within the CD binding site supersede the influence of ligand identity. However, the CD site ligand array does not acquire a high-affinity signature when imported into the EF site, as in the D94S/G98D variant. Instead, it retains its Ca2+-specific signature, implying that this constellation of ligands is less sensitive to placement within the protein molecule. The D59G and D94S single mutations substantially lower binding affinity, consistent with removal of a liganding carboxylate. By contrast, the S55D and G98D mutations substantially increase binding affinity, a finding at odds with corresponding data collected on model peptide systems. Significantly, the Ca2+ affinity of the oncomodulin CD site is increased by mutations that weaken binding at the EF site, indicating a negatively cooperative interaction between the two sites.  相似文献   

4.
For three-dimensional understanding of the mechanisms that control potency and selectivity of the ligand binding at the atomic level, we have analysed opioid receptor-ligand interaction based on the receptor's 3D model. As a first step, we have constructed molecular models for the multiple opioid receptor subtypes using bacteriorhodopsin as a template. The S-activated dihydromorphine derivatives should serve as powerful tools in mapping the three-dimensional structure of the mu opioid receptor, including the nature of the agonist-mediated conformational change that permits G protein-coupling to "second messenger' effector molecules, and in identifying specific ligand-binding contacts with the mu opioid receptor. The analyses of the interactions of some opioid ligands with the predicted ligand binding sites are consistent with the results of the affinity labeling experiments.  相似文献   

5.
The two-step mechanism of coenzyme (thiamine diphosphate, ThDP) binding with two initially identical active sites of apotransketolase has been examined with a kinetic model. Cooperativity between sites in the primary ThDP binding and in the following conformational transition has been analyzed. The only reliable difference between sites is shown to be the tenfold difference in the backward rate constants of the conformational transition; this means that the cooperative interaction between sites takes place only after termination of both steps of ThDP binding in both sites.  相似文献   

6.
Calretinin-22k (CR-22k) is a splice product of calretinin (CR) found specifically in cancer cells, and possesses four EF-hands and a differently processed C-terminal end. The Ca2+-binding properties of recombinant human calretinin CR-22k were investigated by flow dialysis and spectroscopic methods and compared with those of CR. CR possesses four Ca2+-binding sites with positive cooperativity (nH = 1.3) and a [Ca2+]0.5 of 1.5 microM, plus one low affinity site with an intrinsic dissociation constant (K'D) of 0.5 mM. CR-22k contains three Ca2+-binding sites with nH of 1.3 and [Ca2+]0.5 of 1.2 microM, plus a low affinity site with K'D of 1 mM. All the sites seem to be of the Ca2+-specific type. Limited proteolysis and thiol reactivity suggest that that the C terminus of full-length CR, but not of CR-22k, is in close proximity of site I leading to mutual shielding. Circular dichroism (CD) spectra predict that the content of alpha-helix in CR and CR-22k is similar and that Ca2+ binding leads to very small changes in the CD spectra of both proteins. The optical properties are very similar for CR-22k and CR, even though CR-22k possesses one additional Trp at the C-terminal end, and revealed that the Trp residues are organized into a hydrophobic core in the metal-free proteins and become even better shielded from the aqueous environment upon binding of Ca2+. The fluorescence of the hydrophobic probe 2-p-toluidinylnaphtalene-6-sulfonate is markedly enhanced by the two proteins already in the absence of Ca2+ and is further increased by binding of Ca2+. The trypsinolysis patterns of CR and CR-22k are markedly dependent on the presence or absence of Ca2+. Together, our data suggest the presence of an allosteric conformational unit encompassing sites I-III for CR-22k and I-IV for CR, with a very similar conformation and conformational changes for both proteins. In the allosteric unit of CR, site IV is fully active, whereas in CR-22k this site has a 80-fold decreased affinity, due to the decreased amphiphilic properties of the C-terminal helix of this site. Some very specific Ca2+-dependent conformational changes suggest that both CR and CR-22k belong to the "sensor"-type family of Ca2+-binding proteins.  相似文献   

7.
The contraction of cardiac and skeletal muscles is triggered by the binding of Ca2+ to their respective troponin C (TnC) proteins. Recent structural data of both cardiac and skeletal TnC in both the apo and Ca2+ states have revealed that the response to Ca2+ is fundamentally different for these two proteins. For skeletal TnC, binding of two Ca2+ to sites 1 and 2 leads to large changes in the structure, resulting in the exposure of a hydrophobic surface. For cardiac TnC, Ca2+ binds site 2 only, as site 1 is inactive, and the structures show that the Ca2+-induced changes are much smaller and do not result in the exposure of a large hydrophobic surface. To understand the differences between regulation of skeletal and cardiac muscle, we have investigated the effect of Ca2+ binding on the dynamics and thermodynamics of the regulatory N-domain of cardiac TnC (cNTnC) using backbone 15N nuclear magnetic resonance relaxation measurements for comparison to the skeletal system. Analysis of the relaxation data allows for the estimation of the contribution of changes in picosecond to nanosecond time scale motions to the conformational entropy of the Ca2+-binding sites on a per residue basis, which can be related to the structural features of the sites. The results indicate that binding of Ca2+ to the functional site in cNTnC makes the site more rigid with respect to high-frequency motions; this corresponds to a decrease in the conformational entropy (TdeltaS) of the site by 2.2 kcal mol(-1). Although site 1 is defunct, binding to site 2 also decreases the conformational entropy in the nonfunctional site by 0.5 kcal mol(-1). The results indicate that the Ca2+-binding sites in the regulatory domain are structurally and energetically coupled despite the inability of site 1 to bind Ca2+. Comparison between the cardiac and skeletal isoforms in the apo state shows that there is a decrease in conformational entropy of 0.9 kcal mol(-1) for site 1 of cNTnC and little difference for site 2.  相似文献   

8.
The observation of ligand binding to a single molecule has become feasible with recent developments in laser-based fluorescence microscopy. We have simulated such single ligand-binding events for the nicotinic acetylcholine receptor in order to provide comparisons with single channel events under pulsed agonist conditions. The binding events would be more complex than ionic events due to multiple interconversions between different conformational states at the same degree of ligation. Nevertheless, recording of such events could provide valuable new information concerning the role of ligand binding in stabilizing conformational changes and the degree of functional nonequivalence of the binding sites.  相似文献   

9.
The active site gorge of acetylcholinesterase (AChE) contains two sites of ligand binding, an acylation site near the base of the gorge with a catalytic triad characteristic of serine hydrolases, and a peripheral site at the mouth of the gorge some 10-20 A from the acylation site. Many ligands that bind exclusively to the peripheral site inhibit substrate hydrolysis at the acylation site, but the mechanistic interpretation of this inhibition has been unclear. Previous interpretations have been based on analyses of inhibition patterns obtained from steady-state kinetic models that assume equilibrium ligand binding. These analyses indicate that inhibitors bound to the peripheral site decrease acylation and deacylation rate constants and/or decrease substrate affinity at the acylation site by factors of up to 100. Conformational interactions have been proposed to account for such large inhibitory effects transmitted over the distance between the two sites, but site-specific mutagenesis has failed to reveal residues that mediate the proposed conformational linkage. Since examination of individual rate constants in the AChE catalytic pathway reveals that assumptions of equilibrium ligand binding cannot be justified, we introduce here an alternative nonequilibrium analysis of the steady-state inhibition patterns. This analysis incorporates a steric blockade hypothesis which assumes that the only effect of a bound peripheral site ligand is to decrease the association and dissociation rate constants for an acylation site ligand without altering the equilibrium constant for ligand binding to the acylation site. Simulations based on this nonequilibrium steric blockade model were in good agreement with experimental data for inhibition by the peripheral site ligands propidium and gallamine at low concentrations of either acetylthiocholine or phenyl acetate if binding of these ligands slows substrate association and dissociation rate constants by factors of 5-70. Direct measurements with the acylation site ligands huperzine A and m-(N,N, N-trimethylammonio)trifluoroacetophenone showed that bound propidium decreased the association rate constants 49- and 380-fold and the dissociation rate constants 10- and 60-fold, respectively, relative to the rate constants for these acylation site ligands with free AChE, in reasonable agreement with the nonequilibrium steric blockade model. We conclude that this model can account for the inhibition of AChE by small peripheral site ligands such as propidium without invoking any conformational interaction between the peripheral and acylation sites.  相似文献   

10.
In order to identify key structural determinants for ligand recognition, we subjected the ligand-binding domain of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-selective glutamate receptor GluR-D subunit to site-directed mutagenesis. Based on the analysis of the [3H]AMPA-binding properties of the mutated binding sites, we constructed a revised three-dimensional model of the ligand-binding site, different in many respects from previously published models. In particular, our results indicate that the residues Arg507 and Glu727 represent the structural and functional correlates of Arg77 and Asp161 in the homologous bacterial lysine/ornithine/arginine-binding protein and histidine-binding protein, and directly interact with the alpha-carboxyl and alpha-amino group of the bound ligand, respectively. In contrast, Glu424, implicated previously in ionic interactions with the alpha-amino group of the agonist, is unlikely to have such a role in ligand binding. Our results indicate that glutamate receptors share with the bacterial polar amino acid-binding proteins the fundamental mechanism of amino acid recognition.  相似文献   

11.
12.
The rack-induced bonding mechanism of metals to proteins is a useful concept for explaining the generation of metal sites in electron transfer proteins, such as the blue copper proteins, that are designed for rapid electron transfer. The trigonal pyramidal structure imposed by the protein with three strong equatorial ligands (one Cys and two His) provides a favorable geometry for both cuprous and cupric oxidation states. However, the crystal structures of the Met121His mutant of azurin from Alcaligenes denitrificans at pH 6.5 (1.89- and 1.91-A resolutions) and pH 3.5 (2.45-A resolution) show that the preformed metal binding cavity in the protein is more flexible than expected. At high pH (6.5), the Cu site retains the same three equatorial ligands as in the wild-type azurin and adds His121 as a fourth strong ligand, creating a tetrahedral copper site geometry with a green color referred to as 1.5 type. In the low pH (3.5) structure, the protonation of His121 causes a conformational change in residues 117-123, moving His121 away from the copper. The empty coordination site is occupied by an oxygen atom of a nitrate molecule of the buffer solution. This axial ligand is coordinated less strongly, generating a distorted tetrahedral copper geometry with a blue color and spectroscopic properties of a type-1 site. These crystal structures demonstrate that blue copper proteins are flexible enough to permit a range of movement of the Cu atom along the axial direction of the trigonal pyramid.  相似文献   

13.
1. Direct ligand binding studies have shown that the agonist 125I-[Sar1]Ang II and the antagonist 125I-[Sar1Ile8]Ang II bind to bovine uterus smooth muscle membranes in a time-dependent, reversible and saturable manner; both ligands had the same number of high affinity sites. 2. [Sar1Ile8]Ang II inhibited the binding of 125I-[Sar1]Ang II in a non-competitive manner by decreasing the number of high affinity sites without changing the binding affinity of the radioligand. 3. [Sar1]Ang II also inhibited the binding of 125I-[Sar1Ile8]Ang II in a non-competitive manner. 4. Dissociation of both radioligands from their receptor sites was fast enough that pseudo irreversible occupancy of the binding sites could not account for the observed non-competitive inhibition. 5. Displacement studies using 125I-[Sar1Ile8]Ang II as the radioligand provided evidence for the existence of two binding sites when the displacing ligand was [Sar1]Ang II but not when the displacing ligand was [Sar1Ile8]Ang II. 6. GTPS gamma S had no discernible effect on the binding of either 125I-[Sar1]Ang II or 125I-[Sar1Ile8]Ang II to bovine uterine membranes. 7. The present findings are consistent with an allosteric mechanism of antagonism for [Sar1Ile8]Ang II. The data are also consistent with a mechanism wherein agonist and antagonist ligands occupy different binding modes at the same receptor site and induce long-term conformational changes in the receptor which are idiosyncratic with respect to the nature of the ligand. An emerging relationship between the actions of angiotensin peptides and non-peptide mimetics of angiotensin is presented.  相似文献   

14.
The mechanism by which cotransport proteins couple their substrates across cell membranes is not known. A commonly proposed model is that cotransport results from ligand-induced conformational transitions that change the accessibility of ligand-binding sites from one side of the membrane to the other. To test this model, we have measured the accessibility of covalent probes to a cysteine residue (Q457C) placed in the putative sugar-translocation domain of the Na+/glucose cotransporter (SGLT1). The mutant protein Q457C was able to transport sugar, but transport was abolished after alkylation by methanethiosulfonate reagents. Alkylation blocked sugar translocation but not sugar binding. Accessibility of Q457C to alkylating reagents required external Na+ and was blocked by external sugar and phlorizin. The voltage dependence of accessibility was directly correlated with the presteady-state charge movement of SGLT1. Voltage-jump experiments with rhodamine-6-maleimide-labeled Q457C showed that the time course and level of changes in fluorescence closely followed the presteady-state charge movement. We conclude that conformational changes are responsible for the coupling of Na+ and sugar transport and that Q457 plays a critical role in sugar translocation by SGLT1.  相似文献   

15.
A Koshland-Némethy-Filmer model of two cooperating ATP sites has previously been shown to explain the kinetics of inhibition of Na+/K+-ATPase (EC 3.6.1.37) by dansylated ATP (Thoenges, D., and Schoner, W. (1997) J. Biol. Chem. 272, 16315-16321). The present work demonstrates that this model adequately describes all types of interactions and kinetics of a number of ATP analogs that differ in their cooperativity of the high and low affinity ATP binding sites of the enzyme. 2',3'-O(2,4,6-trinitrophenyl)ATP binds in a negative cooperative way to the E1ATP site (Kd = 0.7 microM) and to the E2ATP site (Kd = 210 microM), but 3'(2')-O-methylanthraniloyl-ATP in a positive cooperative way with a lower affinity to the E1ATP binding site (Kd = 200 microM) than to the E2ATP binding site (Kd = 80 microM). 3'(2')-O(5-Fluor-2,4-dinitrophenyl)-ATP, however, binds in a noncooperative way, with equal affinities to both ATP binding sites (Kd = 10 microM). In a research for the structural parameters determining ATP site specificity and cooperativity, we became aware that structural flexibility of ribose is necessary for catalysis. Moreover, puckering of the ring atoms in the ribose is essential for the interaction between ATP sites in Na+/K+-ATPase. A number of derivatives of 2'(3')-O-adenosine with bulky fluorescent substitutes bind with high affinity to the E2ATP site and inhibit Na+/K+-ATPase activity. Evidently, an increased number of interactions of such a bulky adenosine with the enzyme protein tightens binding to the E2ATP site.  相似文献   

16.
Variations in glycosylation exist among urokinase plasminogen activator receptors (u-PARs) from different cell types. We have studied the functional role of N-linked carbohydrate within the ligand-binding domain of u-PAR. Treatment with glycosidases demonstrated that all the N-linked carbohydrates on u-PAR are complex-type oligosaccharides. Substitution of a single Asn (Asn52) to Gln by means of site-directed mutagenesis led to an active receptor mutant with a ligand-binding domain devoid of carbohydrate. The cellular distribution, the glycosyl-phosphatidylinositol anchoring, and the conformational stability after solubilization were unaffected by this single substitution. However, ligand binding analysis demonstrated a 4- 5-fold decrease in affinity as compared with the wild type receptor. Two different strategies were used in order to obtain a u-PAR type completely devoid of N-linked carbohydrates. 1) Tunicamycin treatment of wild type u-PAR-expressing cells. 2) Mutation of all glycosylation sites (Hu-PARN5-mut). In neither case, unglycosylated receptors with ligand binding activity were identified. However, immunofluorescence studies demonstrated that the Hu-PARN5-mut was retained inside the cells in the endoplasmic reticulum. The same result was found for Hu-PARN4-mut, where only the glycosylation sites outside the binding domain were mutated. These results demonstrate that some extent of glycosylation of u-PAR is necessary for cellular transport and for molecular maturation events leading to ligand binding activity. Glycosylation of the binding domain per se affects only the affinity of the receptor. The positive modulation of the Asn52 carbohydrate side chain on ligand affinity suggests that the u-PAR glycosylation variants observed in various cell types may have different functional roles.  相似文献   

17.
S 5627 is a synthetic analogue of chlorogenic acid. S 5627 is a potent linear competitive inhibitor of glucose 6-phosphate (Glc-6-P) hydrolysis by intact microsomes (Ki = 41 nM) but is without effect on the enzyme in detergent- or NH4OH-disrupted microsomes. 3H-S 5627 was synthesized and used as a ligand in binding studies directed at characterizing T1, the Glc-6-P transporter. Binding was evaluated using Ca2+-aggregated microsomes, which can be sedimented at low g forces. Aside from a modest reduction in K values for both substrate and S 5627, Ca2+ aggregation had no effect on glucose-6-phosphatase (Glc-6-Pase). Scatchard plots of binding data are readily fit to a simple "two-site" model, with Kd = 21 nM for the high affinity site and Kd = 2 microM for the low affinity site. Binding to the high affinity site was competitively blocked by Glc-6-P (Ki = 9 microM), whereas binding was unaffected by mannose-6-phosphate, Pi, and PPi and only modestly depressed by 2-deoxy-D-glucose 6-phosphate, a poor substrate for Glc-6-Pase in intact microsomes. Thus the high affinity 3H-S 5627 binding site fits the criteria for T1. Permeabilization of the membrane with 0.3% (3-[(chloramidopropyl)-dimethylammonio]-1-propanesulfonate) activated Glc-6-Pase and broadened its substrate specificity, but it did not significantly alter the binding of 3H-S 5627 to the high affinity sites or the ability of Glc-6-P to block binding. These data demonstrate unequivocally that two independent Glc-6-P binding sites are involved in the hydrolysis of Glc-6-P by intact microsomes. The present findings are the strongest and most direct evidence to date against the notion that the substrate specificity and the intrinsic activity of Glc-6-Pase in native membranes are determined by specific conformational constraints imposed on the enzyme protein. These data constitute compelling evidence for the role of T1 in Glc-6-Pase activity.  相似文献   

18.
The binding of a range of ligands to D2 dopamine receptors in bovine caudate nucleus and recombinant CHO cells expressing the receptor has been determined at different pH values between 4.5 and 8.5. The maximum number of D2 dopamine receptor binding sites in each tissue was not affected by the change in pH, but the affinity of ligands for binding to the receptors was decreased as the pH was decreased. For classical dopamine antagonists, e.g. spiperone and haloperidol, the data on pH dependence of the dissociation constant for receptor binding indicated that the protonation of a single ionizing group on the receptor (pKa approximately 6) influenced the binding process. For antagonists of the substituted benzamide class, the data indicated that the protonation of two ionizing groups (pKa between 6 and 7) influenced the ligand binding process. These ionizing residues may correspond to Asp 114 for the classical antagonists and Asp 114 and Asp 80 for the substituted benzamide antagonists. Further evidence for the participation of carboxyl residues in the ligand binding process was obtained from the inhibition by N,N'-dicyclohexylcarbodiimide of the binding of [3H]spiperone and [3H]YM 09151-2 to D2 receptors in the recombinant CHO cells.  相似文献   

19.
The interaction of myosin and actin is by intracellular Ca2+ concentration, which in turn is controlled by the sarcoplasmic reticulum. In muscle--including cardiac muscle--of vertebrates, and some invertebrates, the site of Ca2+ control is in the thin, actin-containing filaments. These filaments contain tropomyosin and troponin; the latter is a complex of three subunits. When Ca2+ combines with troponin C, the Ca-binding subunit, a shift occurs in the position of tropomyosin that makes it possible for the myosin heads to bind to actin. This process is inhibited by a conformational change in troponin C, resulting in the release of the troponin complex from one of the binding sites on the thin filament. This process exhibits cooperative aspects which have been analyzed in terms of the Ca-binding process and the effect of Ca2+ on actomyosin ATPase activity.  相似文献   

20.
Activation of cyclic nucleotide-gated channels is thought to involve two distinct steps: a recognition event in which a ligand binds to the channel and a conformational change that both opens the channel and increases the affinity of the channel for an agonist. Sequence similarity with the cyclic nucleotide-binding sites of cAMP- and cGMP-dependent protein kinases and the bacterial catabolite activating protein (CAP) suggests that the channel ligand binding site consists of a beta-roll and three alpha-helices. Recent evidence has demonstrated that the third (or C) alpha-helix moves relative to the agonist upon channel activation, forming additional favorable contacts with the purine ring. Here we ask if channel activation also involves structural changes in the beta-roll by investigating the contribution of a conserved arginine residue that, in CAP and the kinases, forms an important ionic interaction with the cyclized phosphate of the bound ligand. Mutations that conserve, neutralize, or reverse the charge on this arginine decreased the apparent affinity for ligand over four orders of magnitude but had little effect on the ability of bound ligand to open the channel. These data indicate that the cyclized phosphate of the nucleotide approaches to within 2-4 A of the arginine, forming a favorable ionic bond that is largely unaltered upon activation. Thus, the binding site appears to be polarized into two distinct structural and functional domains: the beta-roll stabilizes the ligand in a state-independent manner, whereas the C-helix selectively stabilizes the ligand in the open state of the channel. It is likely that these distinct contributions of the nucleotide/C-helix and nucleotide/beta-roll interactions may also be a general feature of the mechanism of activation of other cyclic nucleotide-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号