首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact of null mutations of the genes for the NGF family of neurotrophins and their receptors was examined among the wide variety of medium to large caliber myelinated mechanoreceptors which have a highly specific predictable organization in the mystacial pad of mice. Immunofluorescence with anti-protein gene product 9.5, anti-200-kDa neurofilament protein (RT97), and anti-calcitonin gene-related product was used to label innervation in mystacial pads from mice with homozygous null mutations for nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), the three tyrosine kinase receptors (trkA, trkB, trkC), and the low-affinity nerve growth factor receptor p75. Specimens were sacrificed at birth and at 1, 2, and 4 weeks for each type of mutation as well as at 11 weeks and 1 year for p75 and trkC mutations, respectively. Our results demonstrate several major concepts about the role of neurotrophins in the development of cutaneous mechanoreceptors that are supplied by medium to large caliber myelinated afferents. First, each of the high-affinity tyrosine kinase receptors, trkA, trkB, and trkC, as well as the low-affinity p75 receptor has an impact on at least one type of mechanoreceptor. Second, consistent with the various affinities for particular trk receptors, the elimination of NGF, BDNF, and NT-3 has an impact comparable to or more complex than the absence of their most specific high-affinity receptors: trkA, trkB, and trkC, respectively. These complexities include potential NT-3 signaling through trkA and trkB to support some neuronal survival. Third, most types of afferents are dependent on a different combination of neurotrophins and receptors for their survival: reticular and transverse lanceolate afferents are dependent upon NT-3, NGF, and trkA; Ruffini afferents upon BDNF and trkB; longitudinal lanceolate afferents upon NGF, trkA, BDNF, and trkB; and Merkel afferents on NGF, trkA, NT-3, trkC, and p75. NT-4 has no obvious detrimental impact on the mechanoreceptor development in the presence of BDNF. Fourth, NT-4 and BDNF signaling through trkB may suppress Merkel innervation and NT-3 signaling through trkC may suppress Ruffini innervation. Finally, regardless of the neurotrophin/receptor dependency for afferent survival and neurite outgrowth, NT-3 has an impact on the formation of all the sensory endings. In the context of these findings, indications of competitive and suppressive interactions that appear to regulate the balance of innervation density among the various sets of innervation were evident.  相似文献   

2.
The documented trophic actions of the neurotrophins brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5) upon ventral mesencephalic dopamine neurons in vitro and in vivo are presumed to be mediated through interactions with their high-affinity receptors TrkB (for BDNF and NT-4/5) and TrkC (for NT-3). Although both neurotrophin receptor mRNAs have been detected within the rat ventral midbrain, their specific association with mesencephalic dopaminergic cell bodies remains to be elucidated. The present study was performed to determine the precise organization of trkB and trkC mRNAs within rat ventral midbrain and to discern whether the neurotrophin receptor mRNAs are expressed specifically by dopaminergic neurons. In situ hybridization with isotopically labeled cRNA probes showed that trkB and trkC mRNAs were expressed in all mesencephalic dopamine cell groups, including all subdivisions of the substantia nigra and ventral tegmental area, and in the retrorubral field, rostral and caudal linear raphe nuclei, interfascicular nucleus, and supramammillary region. Combined isotopic/nonisotopic double-labeling in situ hybridization demonstrated that virtually all of the tyrosine hydroxylase (the catecholamine biosynthetic enzyme) mRNA-containing neurons in the ventral midbrain also expressed trkB or trkC mRNAs. Additional perikarya within these regions expressed the neurotrophin receptor mRNAs but were not dopaminergic. The present results demonstrate that essentially all mesencephalic dopaminergic neurons synthesize the neurotrophin receptors TrkB and TrkC and thus exhibit the capacity to respond directly to BDNF and NT-3 in the adult midbrain in vivo. Moreover, because BDNF and NT-3 are produced locally by subpopulations of the dopaminergic cells, the present data support the notion that the neurotrophins can influence the dopaminergic neurons through autocrine or paracrine mechanisms.  相似文献   

3.
trkB encodes a receptor tyrosine kinase activated by three neurotrophins--brain-derived neurotrophic factor (BDNF), neurotrophin-3, and neurotrophin-4/5. In vivo, three isoforms of the receptor are generated by differential splicing--gp145trkB or the full-length trkB receptor, and trkB.T1 and trkB.T2, two cytoplasmically truncated receptors that lack kinases, but contain unique C termini. Although the truncated receptors appear to be precisely regulated during nervous system development and regeneration, their role in neurotrophin signaling has not been directly tested. In this paper, we studied the signaling properties and interactions of gp145trkB, trkB.T1, and trkB.T2 by expressing the receptors in a Xenopus oocyte microinjection assay. We found that oocytes expressing gp145trkB, but not trkB.T1 or trkB.T2, were capable of eliciting 45Ca efflux responses (a phospholipase C-gamma-mediated mechanism) after stimulation by BDNF. When trkB.T1 and trkB.T2 were coexpressed with gp145trkB, they acted as dominant negative receptors, inhibiting the BDNF signal by forming nonfunctional heterodimers with the full-length receptors. An ATP-binding mutant of gp145trkB had similar dominant inhibitory effects. Our data suggest that naturally occurring truncated trkB receptors function as inhibitory modulators of neurotrophin responsiveness. Furthermore, the homodimerization of gp145trkB appears to be an essential step in activation of the BDNF signaling cascade.  相似文献   

4.
The neurotrophins NGF, BDNF, NT-3 and NT-4 have a wide range of effects in the development and regeneration of neural circuits in the visual system of vertebrates. This review focuses on the localization and functions of neurotrophins in the retina, lateral geniculate nucleus, suprachiasmatic nucleus, superior colliculus/optic tectum, and isthmic nuclei. Research of the past 20 years has shown that neurotrophins and their receptors are localized in numerous visual centers from the retina to the visual cortex, and that neurotrophins influence proliferation, neurite outgrowth and survival of cells in the visual system in vitro and in vivo. A relationship between electrical activity and neurotrophic functions has been established in several visual centers in the CNS, and neurotrophins have been implicated in synaptic plasticity in the visual cortex. Besides functions of neurotrophins as retrograde, target-derived trophic factors, recent data indicate that neurotrophins may have anterograde, afferent as well as local, paracrine actions in the retina, optic nerve and the visual cortex. Some neurotrophins appear to regulate proliferation and survival of glial cells in the optic pathways. Neurotrophins increase the survival of retinal ganglion cells after axotomy or ischemia and they promote the regeneration of retinal ganglion cell axons in some vertebration. Neurotrophins also rescue photoreceptors from degeneration. These findings implicate the neurotrophins not only as important regulators during development, but also as potential therapeutic agents in degenerative retinal diseases and after optic nerve injury.  相似文献   

5.
6.
7.
8.
9.
The septo-hippocampal cholinergic and GABAergic systems were lesioned with single unilateral injections of kainic acid (KA) into the septum to further characterize the role of these afferents in the regulation of hippocampal brain-derived neurotrophic factor (BDNF) expression. Nearly all cells expressing choline acetyltransferase, trkA or glutamic acid decarboxylase mRNA disappeared in the medial septum 7 days after the neurotoxin administration. The lesion resulted in a complete loss of CA3 pyramidal cells, and robust increases in BDNF mRNA levels in hippocampal granular dentate cells and in the amygdala. There were rapid transient increases of BDNF mRNA levels in the hippocampal formation and cortex. In addition, we found a strong induction of truncated trkB.T1 mRNA receptors in the stratum radiatum and stratum oriens of the CA3 subfield. The prolonged induction of BDNF mRNA levels suggests an important role of this neurotrophin, possibly mediated by truncated trkB receptors, in the regulation of hippocampal plasticity following injury.  相似文献   

10.
Following spinal cord injury, projection neurons are frequently axotomized and many of the cells subsequently die. One goal in spinal injury research is to preserve damaged neurons so that ultimately they are accessible to regeneration-promoting strategies. Here we ask if neurotrophin treatment can prevent atrophy and death of axotomized sensory projection neurons. In adult rats, a hemisection was made in the thoracic spinal cord and axotomized neurons were retrogradely labelled with Fluoro-Gold. Four distinct populations of cells were identified in the lumbar spinal cord, and both numbers and sizes of labelled cells were assessed at different time points postlesion. A progressive and significant degeneration was observed over time with severe atrophy apparent in all cell populations and significant cell loss evident by 4 weeks postlesion. This time point was used to assess neurotrophin effects. Hemisected rats were treated with either neurotrophin 3 (NT-3) or brain-derived neurotrophic factor (BDNF, 12 microg/day for each), or a vehicle solution, delivered continuously to the lesion site via an osmotic minipump. Treatment with NT-3, but not BDNF, completely reversed cell atrophy in three of the four cell populations and also induced a significant increase in the number of surviving cells. In situ hybridization experiments showed trkB and trkC mRNA to be expressed in the majority of ascending spinal projection neurons, suggesting that these cells should be responsive to both BDNF and NT-3. However, only NT-3 treatment was neuroprotective, indicating that BDNF may not have reached the cell bodies of injured neurons. These results demonstrate that NT-3 may be of benefit in preventing the secondary cell loss that occurs following spinal injury.  相似文献   

11.
CONFOCAL analysis of early postnatal auditory neurones in a bicompartmental culture system was used to test for chemoattractant properties of NGF, BDNF and NT-3 on neuronal process outgrowth. NT-3 exerted a strong tropic effect on neuritic outgrowth from auditory neurones in this system. BDNF and NGF did not have any tropic activity that directed processes outgrowth from auditory neurones. However, BDNF was important for the support of neuronal survival in NGF-treated cultures and for neuritogenesis in NT-3-treated cultures. Since NT-3 has been identified as both a survival factor and a chemotropic agent for auditory neurones, it is likely that this neurotrophin will be a useful therapeutic agent in the treatment of damaged cochleae for the recovery of hearing.  相似文献   

12.
To understand the role of neurotrophins in the visual system, we investigated the distribution of both neurotrophins and their receptors within the retina of a fish that has the capacity to spontaneously regenerate its optic nerve axons after lesion. Intact retinas and retinas from tench, whose optic nerve had been crushed, were analyzed by immunohistochemistry and in situ hybridization. Trk receptors were mainly immunolocalized in cells of the inner nuclear and ganglion cell layers, a distribution coincident with that of their mRNAs. Nerve growth factor (NGF) immunoreactivity was detected exclusively in Müller cell processes, and brain-derived neurotrophic factor (BDNF) was found in both neuronal bodies and Müller cell processes. Neurotrophin-3 (NT-3) was detected in most of the cell nuclei, and neurotrophin-4/5 (NT-4/5) was localized in fibers and in a few cells in the inner retina. An increase in both TrkA protein and mRNA was detected during axonal regeneration within the retinal ganglion cell layer, reaching a maximum 30 days postcrush and returning to normal levels by day 90, when optic nerve regeneration is almost completed in this fish. None of the other neurotrophins and receptors showed appreciable changes. The heterogeneous distribution patterns of neurotrophins and their receptors in fish retina, their differences from the distribution observed in other species, and the TrkA changes after optic nerve crush suggest an important role for these molecules in the normal physiology of the fish retina and during the regeneration process.  相似文献   

13.
The infusion of BDNF and NT-3 into Schwann cell (SC) grafts promotes regeneration of brainstem neurones into the grafts placed in adult rat spinal cord transected at T8 (Xu et al., 1995b). Here, we compared normal SCs with SCs genetically modified to secrete human BDNF, grafted as trails 5 mm long in the cord distal to a transection site and also deposited in the transection site, for their ability to stimulate supraspinal axonal regeneration beyond the injury. SCs were infected with the replication-deficient retroviral vector pL(hBDNF)RNL encoding the human preproBDNF cDNA. The amounts of BDNF secreted (as detected by ELISA) were 23 and 5 ng/24 h per 106 cells for infected and normal SCs, respectively. Biological activity of the secreted BDNF was confirmed by retinal ganglion cell bioassay. The adult rat spinal cord was transected at T8. The use of Hoechst prelabelled SCs demonstrated that trails were maintained for a month. In controls, no SCs were grafted. One month after grafting, axons were present in SC trails. More 5-HT-positive and some DbetaH-positive fibres were observed in the infected vs. normal SC trails. When Fast Blue was injected 5 mm below the transection site (at the end of the trail), as many as 135 retrogradely labelled neurones could be found in the brainstem, mostly in the reticular and raphe nuclei (normal SCs, up to 22, mostly in vestibular nuclei). Numerous neurones were labelled in the ventral hypothalamus (normal SCs, 0). Also, following Fast Blue injection, a mean of 138 labelled cells was present in dorsal root ganglia (normal SCs, 46) and spinal cord (39 vs. 32) rostral to the transection. No labelled spinal neurones rostral to the transection were seen when SCs were not transplanted. Thus, the transplantation of SCs secreting increased amounts of BDNF improved the regenerative response across a transection site in the thoracic cord. Moreover, the enhanced regeneration observed with infected SCs may be specific as the largest response was from neurones known to express trkB.  相似文献   

14.
15.
1. The protein family of the neurotrophins, consisting of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and Neurotrophin-3, -4/5, and -6 (NT-3; NT-4/5; NT-6) is well known to enhance the survival and to stabilize the phenotype of different populations of neurons in the central and the peripheral nervous system. These effects are mediated via binding to specific tyrosine kinase receptors (Trks) and to the low-affinity p75 neurotrophin receptor. 2. The neurotrophins NGF, BDNF, and NT-3 and the BDNF and NT-3 selective receptors (TrkB, TrkC) are expressed at high levels in neurons of the basal forebrain, the hippocampus, and the neocortex of the mammalian brain. The expression and secretion of NGF and BDNF in these brain areas is regulated by (physiological levels of) neuronal activity. 3. Exogenous application of the neurotrophins to hippocampal and neocortical neurons can enhance excitatory glutamatergic synaptic transmission via activation of Trk receptors. In addition, long-term potentiation (a potential cellular correlate for learning and memory formation in mammals) in the rodent hippocampus depends on endogenous supply of neurons with BDNF. 4. Judged by the analysis of electrophysiological data, the BDNF- and NT-3-induced enhancement of glutamatergic synapses is mediated by increasing the efficacy of glutamate release from the presynaptic neuron. However, neurotrophin-dependent postsynaptic enhancement of NMDA (but not AMPA) receptor responsiveness has also been shown. 5. On the molecular level, neither the pre- nor the postsynaptic modulation of glutamatergic synapses by neurotrophins is well understood. However, neurotrophins were shown to acutely affect intraneuronal Ca2+ levels and to influence molecular components of the transmitter release machinery, which could underly the presynaptic modifications, whereas BDNF-induced phosphorylation of NMDA-type glutamate receptors could account for the postsynaptic effects. 6. Taken together, these results suggest that the activity-dependent release of neurotrophins at frequently used synapses could modulate the synaptic efficacy at these junctions. Thus, neurotrophins might operate as locally released feedback modulators of synaptic transmission, and this could be a cellular correlate for certain aspects of information processing in the mammalian brain.  相似文献   

16.
Neurotrophins (NTFs) are a family of structurally related proteins with specific effects on the developing nervous system and a wide range of non-neuronal differentiating cells. To date, four NTFs have been characterized: nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). To perform their biological effects, the NTFs must bind to appropriate receptors on the surface of responsive cells. High- and low-affinity receptors for NTFs have been identified. The high-affinity receptors are members of the trk protein tyrosine kinase receptor family. The low-affinity neurotrophin receptor gp75NTFR is a common receptor for all NTFs. Here we summarize some of our previous findings on the expression patterns of NGF, gp75NTFR, TrkB, and TrkC in the developing molar tooth of the rat. Both NGF and gp75NTFR are localized in dental epithelium and mesenchyme but often their expression patterns differ. Concomitant expression of NGF and gp75NTFR in mesenchyme is correlated with odontoblast differentiation. The trkB and trkC receptors show distinct cell-specific expression patterns in developing tooth, suggesting that other NTFs, apart from NGF, may be involved in odontogenesis. These data demonstrate that NTFs participate in the cascade of molecular events that direct tooth development, and support the notion that NTFs may have multiple and distinct roles in dental tissues.  相似文献   

17.
18.
Neurotrophins exert many biological effects not directly targeted at neurons, including modulation of keratinocyte proliferation and apoptosis in vitro. Here we exploit the cyclic growth and regression activity of the murine hair follicle to explore potential nonneuronal functions of neurotrophins in the skin, and analyze the follicular expression and hair growth-modulatory function of BDNF, NT-4, and their high-affinity receptor, TrkB. The cutaneous expression of BDNF and NT-4 mRNA was strikingly hair cycle dependent and peaked during the spontaneous, apoptosis-driven hair follicle regression (catagen). During catagen, BDNF mRNA and immunoreactivity, as well as NT-4-immunoreactivity, were expressed in the regressing hair follicle compartments, whereas TrkB mRNA and immunoreactivity were seen in dermal papilla fibroblasts, epithelial strand, and hair germ. BDNF or NT-4 knockout mice showed significant catagen retardation, whereas BDNF-overexpressing mice displayed acceleration of catagen and significant shortening of hair length. Finally, BDNF and NT-4 accelerated catagen development in murine skin organ culture. Together, our data suggest that BDNF and NT-4 play a previously unrecognized role in skin physiology as agents of hair growth control. Thus, TrkB agonists and antagonists deserve exploration as novel hair growth-modulatory drugs for the management of common hair growth disorders.  相似文献   

19.
The peripheral nervous system retains a considerable capacity for regeneration. However, functional recovery rarely returns to the preinjury level no matter how accurate the nerve repair is, and the more proximal the injury the worse the recovery. Among a variety of approaches being used to enhance peripheral nerve regeneration are the manipulation of Schwann cells and the use of neurotrophic factors. Such factors include, first, nerve growth factor (NGF) and the other recently identified members of the neurotrophin family, namely, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), neurotrophin-4/5 (NT-4/5); second, the neurokines ciliary neurotrophic factor (CNTF) and leukemia inhibitory factor (LIF); and third, the transforming growth factors (TGFs)-beta and their distant relative, glial cell line-derived neurotrophic factor (GDNF). In this review article we focus on the roles in peripheral nerve regeneration of Schwann cells and of the neurotrophin family, CNTF and GDNF, and the relationship between these. Finally, we discuss what remains to be understood about the possible clinical use of neurotrophic factors.  相似文献   

20.
The precise orchestration of synaptic differentiation is critical for efficient information exchange in the nervous system. The nerve-muscle synapse forms in response to agrin, which is secreted from the motor nerve terminal and induces the clustering of acetylcholine receptors (AChRs) and other elements of the postsynaptic apparatus on the subjacent muscle cell surface. In view of the highly restricted spatial localization and the plasticity of neuromuscular junctions, it seems likely that synapse formation and maintenance are regulated by additional, as-yet-unidentified factors. Here, we tested whether neurotrophins modulate the agrin-induced differentiation of postsynaptic specializations. We show that both brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4) inhibit agrin-induced AChR clustering on cultured myotubes. Nerve growth factor and NT-3 are without effect. Muscle cells express full-length TrkB, the cognate receptor for BDNF and NT-4. Direct activation of this receptor by anti-TrkB antibodies mimicked the BDNF/NT-4 inhibition of agrin-induced AChR clustering. This BDNF/NT-4 inhibition is likely to be an intrinsic mechanism for regulating AChR clustering, because neutralization of endogenous TrkB ligands resulted in elevated levels of AChR clustering even in the absence of added agrin. Finally, high concentrations of agrin can occlude the BDNF/NT-4 inhibition of AChR clustering. These results indicate that an interplay between agrin and neurotrophins can regulate the formation of postsynaptic specializations. They also suggest a mechanism for the suppression of postsynaptic specializations at nonjunctional regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号