首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Tyrosine autophosphorylation of the v-Fms oncogene product results in the formation of high affinity binding sites for cellular proteins with Src homology 2 (SH2) domains that are involved in various signal cascades. Tryptic digestion of the autophosphorylated v-Fms and of its cellular counterpart, the feline c-Fms polypeptide, gave rise to at least six common major phosphopeptides, four of which have been characterized previously. Employing site-directed mutagenesis and phosphopeptide mapping of in vitro phosphorylated glutathione S-transferase v-Fms fusion proteins as well as full-length v-Fms molecules expressed in various cells, we show here that Tyr543 of the juxtamembrane domain and Tyr696 of the kinase insert domain constitute major autophosphorylation sites. Recombinant fusion proteins containing the tyrosine-phosphorylated kinase insert domain bind the growth factor receptor bound protein 2 and the p85 and p110 subunits of phosphatidylinositol 3'-kinase. In contrast, fusion proteins containing the juxtamembrane domain phosphorylated on Tyr543 fail to bind any of the known SH2 domain-containing cellular proteins but associate specifically with an as yet undefined 55-kDa cellular protein that by itself is phosphorylated on tyrosine.  相似文献   

2.
Tyrosine phosphorylation of cellular proteins is an early and an essential step in T cell receptor-mediated lymphocyte activation. Tyrosine phosphorylation of transmembrane receptor chains (such as zeta and CD3 chains) and membrane-associated proteins provides docking sites for SH2 domains of adaptor proteins and signaling enzymes, resulting in their recruitment in the vicinity of activated receptors. pp36/38 is a prominent substrate of early tyrosine phosphorylation upon stimulation through the T cell receptor. The tyrosine-phosphorylated form of pp36/38 is membrane-associated and directly interacts with phospholipase C-gamma 1 and Grb2, providing one mechanism to recruit downstream effectors to the cell membrane. Here, we demonstrate that in Jurkat T cells, pp36/38 associates with the p85 subunit of phosphatidylinositol 3-kinase (PI-3-K p85) in an activation-dependent manner. Association of pp36/38 with PI-3-K p85 was confirmed by transfection of a hemagglutinin-tagged p85 alpha cDNA into Jurkat cells followed by anti-hemagglutinin immunoprecipitation. In vitro binding experiments with glutathione S-transferase fusion proteins of PI-3-K p85 demonstrated that the SH2 domains, but not the SH3 domain, mediated binding to pp36/38. This binding was selectively abrogated by phosphopeptides that bind to p85 SH2 domains with high affinity. Filter binding assays demonstrated that association between pp36/38 and PI-3-K p85 SH2 domains was due to direct binding. These results strongly suggest the role of pp36/38 in recruiting PI-3-K to the cell membrane and further support the idea that pp36/38 is a multifunctional docking protein for SH2 domain-containing signaling proteins in T cells.  相似文献   

3.
Interleukin (IL)-2, a major growth and differentiation factor for T lymphocytes, was found to induce tyrosine phosphorylation of the proto-oncogene products p120-Cbl and CrkL in IL-2-dependent cell lines. We established that, in unstimulated lymphocytes, the Src homology 2 (SH2) and SH3 domain-containing protein Grb2 and the p85 subunit of phosphatidylinositol 3-kinase, associate constitutively with Cbl via their SH3 domains. Furthermore, IL-2 stimulation increased the level of interaction of phosphorylated Cbl with the p85 SH2 domains, and we provide evidence that the preformed Cbl-Grb2 complex recruits the phosphorylated p52 Shc adaptor protein. In addition, we demonstrate that the SH2-SH3-SH3 adaptor protein CrkL is tyrosine-phosphorylated in an IL-2-dependent manner and, via its SH2 domain, associates with a large proportion of phosphorylated Cbl. We also show that p85 is preassociated with the CrkL SH3 domain. Furthermore, the association of CrkL and p85 is increased after IL-2 treatment by a mechanism involving intermediary tyrosine-phosphorylated proteins that remain to be identified. Our results show that CrkL associates independently with Cbl or p85 and suggest that it also participates in larger complexes containing Cbl and p85. Although the precise roles of Cbl and CrkL remain to be elucidated, their tyrosine phosphorylation, in addition to the multiple protein interactions described here, strongly suggest that Cbl and CrkL may play pivotal roles in the early steps of IL-2 signal transduction.  相似文献   

4.
Protein tyrosine kinase p59fyn is associated with the TCR-CD3 complex and is suggested to play a role in T cell activation. To determine the molecular mechanism of p59fyn-mediated signal transduction in T cell activation, we established murine T cell hybridoma lines that expressed an elevated amount of wild-type or mutant fyns. Clones that expressed high levels of normal p59fyn and active p59fyn, encoded by wild-type and f-14 mutant fyn respectively, showed enhanced IL-2 production upon stimulation by anti-CD3 antibodies or natural antigen. On the other hand, clones that expressed kinase negative p59fyn and p59fyn with an SH2 (Src-homology 2) deletion encoded by t-1 mutant fyn showed little induction of IL-2 production upon stimulation. These data suggest that p59fyn is important in T cell signaling and that the SH2 sequence plays a critical role in the reaction. Induction of tyrosine phosphorylation of multiple proteins upon antigenic stimulation was augmented similarly in the cells that respectively expressed wild-type and f-14 mutant fyns at elevated levels. The proteins that became highly tyrosine-phosphorylated included phospholipase C (PLC-gamma 1), p95vav, ZAP-70, the MAP kinase, CD3 zeta and unidentified proteins of 120, 100 and 80 kDa. Tyrosine phosphorylation of the 120, 95 and 68 kDa proteins associated with PLC-gamma 1 was also observed in these cells upon stimulation. In contrast, only the 100 kDa protein and the MAP kinase were increasingly tyrosine phosphorylated in the antigen-stimulated cells expressing t-1 fyn. These data suggest that PLC-gamma 1, PLC-gamma 1 associated molecules, p95vav, the 80 kDa protein, ZAP-70 and the CD3 zeta chain may be substrates of p59fyn or of other tyrosine kinases regulated by p59fyn and be important in T cell signaling.  相似文献   

5.
TCR engagement activates phospholipase C gamma 1 (PLC gamma 1) via a tyrosine phosphorylation-dependent mechanism. PLC gamma 1 contains a pair of Src homology 2 (SH2) domains whose function is that of promoting protein interactions by binding phosphorylated tyrosine and adjacent amino acids. The role of the PLC gamma 1 SH2 domains in PLC gamma 1 phosphorylation was explored by mutational analysis of an epitope-tagged protein transiently expressed in Jurkat T cells. Mutation of the amino-terminal SH2 domain (SH2(N) domain) resulted in defective tyrosine phosphorylation of PLC gamma 1 in response to TCR/CD3 perturbation. In addition, the PLC gamma 1 SH2(N) domain mutant failed to associate with Grb2 and a 36- to 38-kDa phosphoprotein (p36-38), which has previously been recognized to interact with PLC gamma 1, Grb2, and other molecules involved in TCR signal transduction. Conversely, mutation of the carboxyl-terminal SH2 domain (SH2(C) domain) did not affect TCR-induced tyrosine phosphorylation of PLC gamma 1. Furthermore, binding of p36-38 to PLC gamma 1 was not abrogated by mutations of the SH2(C) domain. In contrast to TCR/CD3 ligation, treatment of cells with pervanadate induced tyrosine phosphorylation of either PLC gamma 1 SH2(N) or SH2(C) domain mutants to a level comparable with that of the wild-type protein, indicating that pervanadate treatment induces an alternate mechanism of PLC gamma 1 phosphorylation. These data indicate that the SH2(N) domain is required for TCR-induced PLC gamma 1 phosphorylation, presumably by participating in the formation of a complex that promotes the association of PLC gamma 1 with a tyrosine kinase.  相似文献   

6.
SHPS-1 is an approximately 120 kDa glycosylated receptor like protein that contains three immunoglobulin-like domains in its extracellular region as well as four potential tyrosine phosphorylation and SRC homology 2 (SH2) domain binding sites in its cytoplasmic region. Lysophosphatidic acid (LPA) stimulated the rapid tyrosine phosphorylation of SHPS-1 and its subsequent association with SHP-2, a protein tyrosine phosphatase containing SH2 domains in Rat-1 fibroblasts. LAP-induced tyrosine phosphorylation of SHPS-1 was inhibited by Clostridium botulinum C3 exoenzyme (which inactivates RHO) but not by pertussis toxin. The protein kinase C activator phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA) also stimulated tyrosine phosphorylation of SHPS-1; however, down-regulation of protein kinase C by prolonged exposure of cells to TPA did not affect LAP-induced tyrosine phosphorylation of SHPS-1. LPA-induced tyrosine phosphorylation of SHPS-1 was markedly reduced in either focal adhesion kinase (FAK)-deficient mouse cells or CHO cells overexpressing the tyrosine kinase CSK. Overexpression of a catalytically inactivate SHP-2 markedly inhibited MAP kinase activation in response to low concentrations of LPA in CHO cells, whereas overexpression of a wild-type SHPS-1 did enhance this effect of LPA. Furthermore, MAP kinase activation in response to a low concentration of LPA was inhibited by botulinum C3 exoenzyme. These results indicate that LPA-induced tyrosine phosphorylation of SHPS-1 and its association with SHP-2 may be mediated by a RHO-dependent pathway that includes FAK and a SRC family kinase. Thus, in addition to its role in receptor tyrosine kinase-mediated MAP kinase activation, the formation of a complex between SHPS-1 and SHP-2 may, in part, play an important role in the activation of MAP kinase in response to low concentrations of LPA.  相似文献   

7.
Flt3/Flk2 belongs to class III receptor tyrosine kinases. Like other members of type III receptor tyrosine kinases, murine Flt3 induces tyrosine phosphorylation of p85 and subsequently activation of PI3 kinase upon FL binding. While p85 binds murine Flt3 at Y958 in the carboxyl terminus of the receptor, human Flt3 does not have a potential p85-binding site in the carboxyl terminus. In this study, we examined whether p85 binds to human Flt3 in Baf3/Flt3 and THP-1 cells. In contrast to murine Flt3, p85 is not tyrosine phosphorylated after FL stimulation, nor does it bind Flt3 in both cell lines. Instead p85 associates inducibly with tyrosine phosphorylated SHP-2 and constitutively with SHIP and two tyrosine phosphorylated proteins with molecular weights about 100-kDa (p100) and 120-kDa (p120) in Baf3/Flt3 cells. The p100 associates with both p85 and SHP-2. In THP-1 cells, p85 associates inducibly with tyrosine phosphorylated SHIP, p100 and p120. These results indicate that p85 does not bind human Flt3, but forms a complex with SHP-2, SHIP, p100 and p120 in hematopoietic cells.  相似文献   

8.
To identify novel proteins capable of associating with the Raf-1 serine/threonine kinase, we investigated whether Raf-1 could interact with the Src homology 2 (SH2) domains of various signal-transducing molecules. In this report, we demonstrate that Raf-1 associated with the SH2 domain of Fyn (a member of the Src tyrosine kinase family) but not with the SH2 domains of phospholipase C-gamma 1, the p85 alpha subunit of phosphatidylinositol 3-kinase, and SH2-containing protein tyrosine phosphatase 2. Unlike most SH2 domain interactions that require tyrosine-phosphorylated residues, the Raf-1/Fyn SH2 domain association was dependent on the serine phosphorylation of Raf-1. Our results also demonstrate that Raf-1 interacted with the SH2 domain of Src and that this interaction was destabilized by mutation of Arg175 found within the conserved SH2 domain FLVRES sequence. In addition, we show that inclusion of additional Src sequences containing the SH3 domain increased the association of Raf-1 with the Src SH2 domain. Finally, using the baculovirus/Sf9 cell system, we show that coexpression of Raf-1 with full-length Fyn/Src resulted in the coimmunoprecipitation of Raf-1 with Fyn/Src, the tyrosine phosphorylation of Raf-1, and the stimulation of Raf-1 kinase activity. These results suggest that Raf-1 may form a functional complex with Fyn/Src mediated in part by SH2 domains and the serine phosphorylation of Raf-1.  相似文献   

9.
p120 GTPase-activating protein (GAP) is a negative regulator of Ras that functions at a key relay point in signal transduction pathways that control cell proliferation. Among other proteins, p120 GAP associates with p190, a GAP for the Ras-related protein, Rho. To characterize the p120.p190 interaction further, we used bacterially expressed glutathione S-transferase fusion polypeptides to map the regions of p120 necessary for its interactions with p190. Our results show that both the N-terminal and the C-terminal SH2 domains of p120 are individually capable of binding p190 expressed in a baculovirus/insect cell system. Moreover, the two SH2 domains together on one polypeptide bind synergistically to p190, and this interaction is dependent on tyrosine phosphorylation of p190. In addition, mutation of the highly conserved Arg residues in the critical FLVR sequences of both SH2 domains of full-length p120 reduces binding to tyrosine-phosphorylated p190. The dependence on p190 phosphorylation for complex formation with p120 SH2 domains observed in vitro is consistent with analysis of the native p120.p190 complexes formed in vivo. These findings suggest that SH2-phosphotyrosine interaction is one mechanism by which the cell regulates p120.p190 association and thus may be a means for coordinating the Ras- and Rho-mediated signaling pathways.  相似文献   

10.
SHPS-1 is a 120 kDa glycosylated receptor-like protein that contains immunoglobulin-like domains in its extracellular region and four potential tyrosine phosphorylation for SH2 domain binding sites in its cytoplasmic region. Epidermal growth factor (EGF) stimulated the rapid tyrosine phosphorylation of SHPS-1 and subsequent association of SHPS-1 with SHP-2, a protein tyrosine phosphatase containing SH2 domains, in Chinese hamster ovary cells overexpressing human EGF receptors. In the cells overexpressing SHPS-1, the tyrosine phosphorylation of SHPS-1 was more evident than that observed in parent cells. However, overexpression of SHPS-1 alone did not affect the activation of MAP kinase in response to EGF. These results suggest that SHPS-1 may be involved in the recruitment of SHP-2 from the cytosol to the plasma membrane in response to EGF.  相似文献   

11.
Protein tyrosine phosphorylation is associated with sperm capacitation and the acrosome reaction in several mammalian species. Changes in phosphorylation of a 95-kDa protein in human, mouse, and domestic cat spermatozoa are known to be influenced by capacitation and exposure to zona pellucida (ZP) proteins. We previously reported diminished phosphorylation of 95- and 160-kDa proteins in spermatozoa from teratospermic cats, compared with normospermic domestic cats. To determine if these proteins and mechanisms are present in other species in the phenotypically diverse Felidae family, we examined the relationship between tyrosine-phosphorylated sperm proteins and sperm morphology in the leopard cat (approximately 65% normal sperm/ejaculate), tiger (approximately 65%), clouded leopard (approximately 15%), and cheetah (approximately 30%). Furthermore, we investigated the involvement of cyclic adenosine monophosphate (cAMP) in the regulation of sperm protein tyrosine phosphorylation. Specifically, we assessed the following: 1) presence of tyrosine-phosphorylated proteins in sperm extracts; 2) changes in protein tyrosine phosphorylation after sperm capacitation and swim-up separation; 3) impact of tyrosine kinase inhibition on leopard cat sperm protein phosphorylation and ZP penetration; and 4) involvement of a cAMP-dependent pathway in the regulation of protein tyrosine phosphorylation. Immunoblotting analysis with anti-phosphotyrosine antibody (PY20) indicated that a 95-kDa protein was present in all four species. Additional phosphorylated proteins were detected in the leopard cat (145- and 175-kDa proteins), tiger (185-kDa protein), clouded leopard (160- and 190-kDa proteins), and cheetah (115- and 155-kDa proteins). Sperm capacitation in vitro increased phosphorylation of one or more proteins in the leopard cat, tiger and clouded leopard, but not in the cheetah. Although swim-up separation increased the proportion of morphologically normal spermatozoa in the clouded leopard and cheetah, no changes were observed in phosphorylation of the 95-kDa sperm protein. Thus, phosphorylation of the 95-kDa protein appeared to be related to the condition of teratospermia. Exposing leopard cat spermatozoa to the tyrosine kinase inhibitor, tyrphostin, reduced (P < 0.05) phosphorylation of the 95- and 145-kDa proteins, as well as ZP penetration, without affecting sperm motility. Similarly, when spermatozoa were incubated in the presence of cAMP analogs or active and inactive stereoisomers of cAMP, phosphorylation of sperm proteins was either stimulated or inhibited. Together, these data suggest that protein tyrosine kinase mechanisms appear conserved within the family Felidae and are regulated by a cAMP/protein kinase A pathway.  相似文献   

12.
Recently c-Cbl has been reported to be phosphorylated upon CSF-1 stimulation. The product of the c-cbl proto-oncogene (c-Cbl) is a 120 kDa protein harboring several docking sites for Src homology 2 (SH2) domain containing proteins and proline-rich regions that have been shown to allow its constitutive association with the SH3 domains of Grb2. We demonstrate here that CSF-1 exposure of stable transfectant CHO cells expressing the CSF-1 receptor induced the sustained tyrosine phosphorylation of c-Cbl and its subsequent association with Crk-II and the p85 kDa subunit of the PI 3-kinase, while it constitutively associates with Grb2. We demonstrate by in vitro experiments that these associations require the SH2 domain of Crk-II and both the C- and N-terminal SH2 domains of the p85 subunit of the PI 3-kinase. cCbl is the major PI 3-kinase-containing protein in c-Fms expressing CHO cells upon CSF-1 stimulation. Thus c-Cbl behaves as a core protein, allowing the formation of a quaternary complex including, Crk-II, PI 3-kinase and Grb2. We provide evidence that this multiprotein complex can interact with the tyrosine phosphorylated CSF-1 receptor through the unoccupied SH2 domain of Grb2.  相似文献   

13.
CD19 is a B cell surface protein capable of forming non-covalent molecular complexes with a number of other B cell surface proteins including the CD21/CD81/Leu-13 complex as well as with surface immunoglobulin. CD19 tyrosine phosphorylation increases after B cell activation, and is proposed to play a role in signal transduction through its cytoplasmic domain, which contains nine tyrosine residues. Several second messenger proteins have been shown to immunoprecipitate with CD19, including p59 Fyn (Fyn), p59 Lyn (Lyn) and phosphatidylinositol-3 kinase (PI-3 kinase). These associations are predicted to occur via the src-homology 2 (SH2) domains of the second messenger proteins. Two of the cytoplasmic tyrosines in the CD19 cytoplasmic region contain the consensus binding sequence for the PI-3 kinase SH2 domain (YPO4-X-X-M). However, the reported consensus binding sequence for the Fyn and Lyn SH2 domains (YPO4-X-X-I/L) is not found in CD19. We investigated the capacity of CD19 cytoplasmic tyrosines to bind both Fyn and PI-3 kinase SH2-domain fusion proteins. In activated B cells, both Fyn and PI-3 kinase SH2-domain fusion proteins precipitate CD19. Using synthetic tyrosine-phosphorylated peptides comprising each of the CD19 cytoplasmic tyrosines and surrounding amino acids, we investigated the ability of the Fyn SH2 and PI-3 kinase SH2 fusion proteins to bind to the different CD19 cytoplasmic phosphotyrosine peptides. ELISA revealed that the two CD19 cytoplasmic tyrosine residues contained within the Y-X-X-M sequences (Y484 and Y515) bound preferentially to the PI-3 kinase SH2-domain fusion proteins. Two different tyrosines (Y405 and Y445) bound preferentially to the Fyn SH2-domain fusion protein via a novel sequence, Y-E-N-D/E, different from that previously reported for the Fyn SH2 domain. In precipitation studies, peptide Y484 was able to compete with tyrosine phosphorylated CD19 specifically for binding to the PI-3 kinase SH2 domain fusion proteins, while peptides Y405 and Y445 were able to compete specifically for binding to the Fyn SH2 domain fusion proteins. These results indicate that CD19 may be capable of binding both Fyn and PI-3 kinase concurrently, suggesting a mechanism for CD19 signal transduction, in which binding of PI-3 kinase to the Fyn SH3 domain results in activation of PI-3 kinase.  相似文献   

14.
The SH2-SH3 adaptor protein Crkl has been implicated in the signal transduction pathways of several membrane-bound receptors. Tyrosine phosphorylation of proteins associated with such signalling complexes can generate binding sites for the Crkl SH2-domain and can recruit proteins constitutively bound to Crkl via the Crkl SH3 domain into such complexes. In the current study we show that Crkl, but only a minor amount of the related Crk, form constitutive complexes in vivo with guanine nucleotide exchange factor C3G in 3T3 fibroblasts. Adhesion of both normal and transformed cells to fibronectin or other extracellular matrix proteins consistently induces the tyrosine-phosphorylation of C3G. Adhesion-induced tyrosine phosphorylation of C3G is dependent on an intact cytoskeleton and peaks at 5-10 min after attachment. In contrast, 3T3 cells stably transfected with Bcr/Abl P210 show a prominent reduction in the amount of C3G complexed to Crkl and do not exhibit tyrosine-phosphorylation of C3G upon spreading and attachment. These data establish that integrin-mediated cell adhesion results in Crkl-mediated tyrosine phosphorylation of C3G, a pathway which can be disrupted by Bcr/Abl.  相似文献   

15.
PURPOSE: The extracellular matrix serves as a structural support for the corneal stroma and mediates signaling events that regulate the intracellular environment of stromal keratocytes. We hypothesize that adhesion and injury mediate signal transduction events causing the phosphorylation of tyrosine residues of specific adhesion proteins and that phosphorylation is required for cellular adhesion and migration. METHODS: For the adhesion experiments; primary rabbit stromal fibroblasts were seeded and phosphorylation of tyrosine residues was followed from 1 min to 24 h. For the injury experiments, confluent primary cultures were rendered quiescent, wounded, and tyrosine phosphorylation was followed from 30 s to 6 h. The antibody (py-20) was used to detect proteins phosphorylated on tyrosine residues. We examined changes in the phosphorylation of focal adhesion kinase (FAK), paxillin and cortactin, using immunoprecipitation and Western blot analysis. RESULTS: In the adhesion experiments, the phosphorylation of a 68-kDa protein was detected after 1 min, and the phosphorylation of a 125-kDa protein was not detected until 15 min. These proteins were identified in re-probed blots as paxillin and FAK. In the injury experiments, FAK phosphorylation was detected within 30 s and remained elevated for 6 h when cells were cultured on fibronectin. Both FAK and paxillin phosphorylation were prominent after injury, but unlike FAK phosphorylation, paxillin phosphorylation decreased over time. Phosphorylation was prominent at the wound margin. After wound closure, it returned to background levels. Tyrosine kinase inhibitors, genistein and herbimycin, decreased the number of adherent cells and altered the rate of cell migration after injury, compared to control (DMSO alone). CONCLUSION: The results indicate that injury and cell-matrix interaction mediate the phosphorylation of specific adhesion proteins and that phosphorylation is required for wound repair.  相似文献   

16.
Protein tyrosine phosphorylation was examined on a human glioblastoma cell line, T98G, after exposure to oxidative stress in vitro. Hydrogen peroxide (1 mM) markedly induced tyrosine phosphorylation of a 125 kDa protein at 30 min after stimulation. The 125-kDa molecule phosphorylated was revealed to be a focal adhesion kinase (FAK). Tyrosine phosphorylation of p125FAK continued at least up to 5 h, and decreased after 8 h concomitant with apoptosis. Tyrosine phosphorylation of p125FAK was blocked by herbimycin A, a potent inhibitor of protein tyrosine kinases, while apoptosis was accelerated. When T98G cells were incubated with FAK antisense oligonucleotide, apoptosis was also accelerated. These results suggest that tyrosine phosphorylation of p125FAK plays a suppressive role in hydrogen peroxide-induced apoptosis.  相似文献   

17.
Human neutrophils (PMN) respond to tumor necrosis factor (TNF) by releasing their granules, reorganizing their cytoskeleton, and massively secreting hydrogen peroxide. This response is dependent on adhesion to extracellular matrix proteins and expression of CD11b/CD18 integrins (Nathan, C., S. Srimal, C. Farber, E. Sanchez, L. Kabbash, A. Asch, J. Gailit, and S. D. Wright. 1989. J. Cell Biol. 109:1341-1349). We investigated the role of tyrosine phosphorylation in the response of PMN to TNF. PMN adherent to protein-coated surfaces but not suspended PMN showed tyrosine phosphorylation of several proteins (approximately 150, approximately 115, approximately 75, and approximately 65 kD) in response to TNF. Tyrosine phosphorylation was evident 5 min after addition of TNF and lasted at least 2 h. The tyrosine kinase inhibitors K252a, genistein and ST638 suppressed tyrosine phosphorylation and blocked hydrogen peroxide production in a reversible manner at low concentrations. Tyrosine kinase inhibitors also blocked the spreading of PMN in response to TNF. Dihydrocytochalasin B did not inhibit tyrosine phosphorylation, but in its presence phosphorylation was rapidly reversed. By immunocytochemistry, the majority of tyrosine phosphoproteins were localized to focal adhesions. Thus TNF-induced tyrosine phosphorylation depends on adhesion of PMN to extracellular matrix proteins, and participates in the transduction of the signals that direct the cells to spread on a biological surface and undergo a respiratory burst.  相似文献   

18.
Protein tyrosine kinases of the Src family are negatively regulated by phosphorylation in the C-terminal tail of the molecule. A different protein tyrosine kinase, Csk, is largely responsible for this regulation. The phosphorylated tail of c-Src engages with the SH2 domain in a conformation that is associated with low kinase activity and which involves stabilization by the SH3 domain. Inducible expression of c-Src in fission yeast is lethal unless Csk is coexpressed. Using this assay we present evidence that Src regulation by C-terminal phosphorylation does not require the myristylation signal or the unique domain at the N-terminus of the Src protein. Mutagenesis of the SH3 and SH2 domains of Csk show that neither are necessary in yeast or in vitro for efficient regulation of Src. Mutation of Tyr416 of Src, a site of autophosphorylation common to most protein tyrosine kinases, abolished the ability of Src to arrest growth of phosphorylate endogenous proteins. Tyr416 had the same effect on a shorter form of Src consisting of the kinase domain only, indicating that the mutation affects a property intrinsic to the catalytic domain. The residual activity of full-length Src mutated at Tyr416 is efficiently repressed by Csk action, suggesting that regulation by C-terminal phosphorylation does not act by preventing phosphorylation at Tyr416.  相似文献   

19.
Insulin binds to the alpha subunit of the insulin receptor which activates the tyrosine kinase in the beta subunit and tyrosine-phosphorylates the insulin receptor substrates-1 (IRS-1). Insulin promotes the formation of a complex between tyrosine-phosphorylated IRS-1 and several proteins including phosphoinositide(PI) 3-kinase, a heterodimer consisting of regulatory 85-kDa (p85) and catalytic 110-kDa (p110) subunits, GRB2 and Syp via the Src homology region 2 (SH2) domains. Recently, it was suggested that GRB2-Sos complex binding to IRS-1 was linked to Ras activation and that PI 3-kinase binding to IRS-1 was linked to activation of glucose transport. Since the mechanism of insulin-stimulated glucose uptake is mainly due to translocation of glucose transporters from an intracellular vesicle pool to the plasma membrane, PI 3-kinase activity may be involved in vesicle transport in mammalian cells.  相似文献   

20.
Purified amino-terminal Src homology 2 (SH2) domains of GAP, PLCgamma1 and the p85alpha subunit of PI 3-kinase, as well as the carboxy-terminal SH2 domain of the latter protein and the unique SH2 domain of Grb2, were injected into full grown, stage VI Xenopus laevis oocytes. None of the injected domains showed any effect when injected alone, nor did they affect the rate of GVBD induced by progesterone, an adenylate cyclase-dependent process. On the other hand, the unique Grb2 SH2 domain and all N-terminal SH2 domains injected inhibited to various degrees the rate of insulin-induced GVBD, a tyrosine kinase dependent pathway. Interestingly, and in contrast to the behavior shown by the N-terminal domain of the same molecule, the C-terminal SH2 domain of p85 did not inhibit, but slightly accelerated the rate of GVBD induced by insulin. Furthermore, whereas the Grb SH2 domain and all N-terminal SH2 domains tested failed to co-operate with normal Ras protein to induce GVBD, the C-terminal SH2 domain of p85alpha exhibited significant synergy when coinjected with normal Ras protein, indicating that the C- and N-terminal SH2 domains of p85alpha exert opposite (positive and negative, respectively) regulatory roles in the control of oocyte insulin/Ras signaling pathways. Our results demonstrate that the purified, isolated SH2 domains retain structural and functional specificity and that Xenopus oocytes constitute an useful biological system to analyse their functional role in tyrosine kinase signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号