共查询到19条相似文献,搜索用时 78 毫秒
1.
雷道仲 《网络安全技术与应用》2014,(7):88-89
红外传感器在家用电器遥控和机器人避障方面有着广泛的应用,笔者根据红外传感器的这一特性设计出一款教育机器人避障电路,介绍了红外传感器在机器人避障电路中的应用,给出红外传感器与单片机系统的硬件接口电路和避障软件的编程思路,并通过测试,得出了影响红外传感器避障的相关因素,并提出了改进的方法和措施. 相似文献
2.
3.
本文在移动机器人的避障系统中,充分利用数字信号处理器(DSP)超强的运算能力,以及单片机(MCU)善于控制的特点,构造了DSP+MCU的双CPU系统,并且利用粗糙集理论进行多传感器信息融合,实现了移动智能机器人在不确定环境中实时获取外部信息,快速地实现避障. 相似文献
4.
6.
热释电红外传感器在防盗系统中的应用 总被引:7,自引:0,他引:7
介绍一种自动防盗报警系统。该系统由热释电红外传感器、电话和检控电路组成。若有人体在警戒范围内移动 ,红外传感器检测出信号 ,检控电路使电话自动拨号 (如 110 ) ,并通过其中的语言电路报告现场地址。 相似文献
7.
蔡卓凡 《自动化技术与应用》2014,(5):85-89
本文介绍了采用多超声波传感器的避障小车的设计与实现.通过多个超声波发送脉冲检测与障碍物间的距离,控制方向舵机进行转向,实现小车的避障功能.小车采用前轮舵机转向,后轮H桥驱动电路和齿轮减速驱动的方式,以Arduino Mega ADK控制板作为控制核心,进行了软硬件系统的设计,搭建出自动避障小车平台,取得了良好的实验效果. 相似文献
8.
本设计方案以ATmega128为系统的核心,借助超声波传感器,提出一种超声波三角形测距定位的方法,结合模糊控制理论和PI控制算法,设计出一种模糊-PI双模控制器,用于控制智能车,实现了智能车户外智能避障,高速稳定运行。 相似文献
9.
针对目前已有的硬件条件,从硬件和软件两方面描述了自动避障和火焰搜索在智能灭火机器人中的实现方法.现场运行实验表明,该系统能够较好地实现灭火机器人的自动避障和火焰搜索. 相似文献
10.
基于单片机的智能车避障的实现 总被引:3,自引:0,他引:3
主要介绍了一种具有避障功能的智能小车的设计方案。该方案以AT89S52为整个系统的核心,使用不同频率的两种红外对管进行避障,用红外LED发射管在障碍区外形成一个隐形的安全区,850nm红外和940nm的红外发射二极管均匀分布在障碍区圆上,通过单片机处理红外对管传输过来的数据从而实现智能控制,达到避障的目的。 相似文献
11.
针对智能小车在不确定坏境下自主避障的情况,采用超声波传感器和红外传感器相结合来感知外界环境信息。将传感器采集到的各种数据利用T-S模糊神经网络进行融合.通过实验仿真表明:此方法能够使智能小车对障碍物灵活避障. 相似文献
12.
刘洲洲 《计算技术与自动化》2013,(2):133-136
传统的人工势场法由于存在局部极小值问题,使智能无人车无法到达目标点。本文提出一种角度偏移的改进人工势场方法来进行避障的路径规划。介绍传统人工势场模型,详细介绍改进人工势场方法,并且对改进人工势场法进行仿真,实验证明方法的有效性。 相似文献
13.
无人艇(Unmanned surface vehicle, USV)作为一种具有广泛应用前景的无人系统, 其自主决策能力尤为关键. 由于水面运动环境较为开阔, 传统避障决策算法难以在量化规则下自主规划最优路线, 而一般强化学习方法在大范围复杂环境下难以快速收敛. 针对这些问题, 提出一种基于阈值的深度Q网络避障算法(Threshold deep Q network, T-DQN), 在深度Q网络(Deep Q network, DQN)基础上增加长短期记忆网络(Long short-term memory, LSTM)来保存训练信息, 并设定经验回放池阈值加速算法的收敛. 通过在不同尺度的栅格环境中进行实验仿真, 实验结果表明, T-DQN算法能快速地收敛到最优路径, 其整体收敛步数相比Q-learning算法和DQN算法, 分别减少69.1%和24.8%, 引入的阈值筛选机制使整体收敛步数降低41.1%. 在Unity 3D强化学习仿真平台, 验证了复杂地图场景下的避障任务完成情况, 实验结果表明, 该算法能实现无人艇的精细化避障和智能安全行驶. 相似文献
14.
Most obstacle avoidance techniques do not take into account vehicle shape and kinematic constraints. They assume a punctual
and omnidirectional vehicle and thus they are doomed to rely on approximations when used on real vehicles. Our main contribution
is a framework to consider shape and kinematics together in an exact manner in the obstacle avoidance process, by abstracting
these constraints from the avoidance method usage. Our approach can be applied to many non-holonomic vehicles with arbitrary
shape.
For these vehicles, the configuration space is three-dimensional, while the control space is two-dimensional. The main idea
is to construct (centred on the robot at any time) the two-dimensional manifold of the configuration space that is defined
by elementary circular paths. This manifold contains all the configurations that can be attained at each step of the obstacle
avoidance and is thus general for all methods. Another important contribution of the paper is the exact calculus of the obstacle
representation in this manifold for any robot shape (i.e. the configuration regions in collision). Finally, we propose a change
of coordinates of this manifold so that the elementary paths become straight lines. Therefore, the three-dimensional obstacle
avoidance problem with kinematic constraints is transformed into the simple obstacle avoidance problem for a point moving
in a two-dimensional space without any kinematic restriction (the usual approximation in obstacle avoidance). Thus, existing
avoidance techniques become applicable.
The relevance of this proposal is to improve the domain of applicability of a wide range of obstacle avoidance methods. We
validated the technique by integrating two avoidance methods in our framework and performing tests in the real robot.
Javier Minguez received the physics science degree in 1996 from the Universidad Complutense de Madrid, Madrid, Spain, and the Ph.D. degree
in computer science and systems engineering in 2002 from the University of Zaragoza, Zaragoza, Spain. During his student period,
in 1999 he was a research visitor in the Robotics and Artificial Intelligence Group, LAASCNRS, Toulouse, France. In 2000,
he visited the Robot and ComputerVision Laboratory (ISR-IST), Technical University of Lisbon, Lisbon, Portugal. In 2001, he
was with the Robotics Laboratory, Stanford University, Stanford, USA. He is currently a fulltime Researcher in the Robot,
Vision, and Real Time Group, in the University of Zaragoza. His research interests are obstacle avoidance, motion estimation
and sensor-based motion systems for mobile robots.
Luis Montano was born on September 6, 1958 in Huesca, Spain. He received the industrial engineering degree in 1981 and the PhD degree
in 1987 from the University of Zaragoza, Spain. He is an Associate Professor of Systems Engineering and Automatic Control
at the University of Zaragoza (Spain). He has been Head of the Computer Science and Systems Engineering Department of the
University of Zaragoza.
Currently he is the coordinator of the Production Technologies Research in the Aragon Institute of Engineering Research and
of the Robotics, Perception and Real Time group of the University of Zaragoza. He is principal researcher in robotic projects
and his major research interests are mobile robot navigation and cooperative robots.
José Santos-Victor received the PhD degree in Electrical and Computer Engineering in 1995 from Instituto Superior Técnico (IST - Lisbon, Portugal),
in the area of Computer Vision and Robotics. He is an Associate Professor at the Department of Electrical and Computer Engineering
of IST and a researcher of the Institute of Systems and Robotics (ISR), at the Computer and Robot Vision Lab - VisLab. (http://vislab.isr.ist.utl.pt)
He is the scientific responsible for the participation of IST in various European and National research projects in the areas
of Computer Vision and Robotics. His research interests are in the areas of Computer and Robot Vision, particularly in the
relationship between visual perception and the control of action, biologically inspired vision and robotics, cognitive vision
and visual controlled (land, air and underwater) mobile robots.
Prof. Santos-Victor is an IEEE member and an Associated Editor of the IEEE Transactions on Robotics. 相似文献
15.
为解决清洁车普遍存在的清扫盘和喷水杆容易因触碰路肩造成损失的问题,提出了一种基于Jetson和超声传感器的清洁车路肩距离检测及避障方法。该方法采用超声传感器检测清洁车清扫盘到路肩的距离,以Jetson AGX Xavier作为控制核心。Jetson控制器对超声传感器检测到的距离信息进行处理,生成控制指令,通过CAN总线将控制指令传送到车载CAN设备控制器,控制清扫盘和喷水杆收放来减少损失。行车实验表明,所提出的检测方法和系统可以有效避免清洁车离路肩过近,减少清扫盘和喷水杆与路肩的碰撞。 相似文献
16.
17.
智能小车以STC12C5A60S2单片机为控制核心,采用反射型光电探测器RPR-220对白纸中的黑色路径进行探测,按照预定的路径行驶,小车运用短距离无线通信模块NRF24L01将行驶状况传输给计算机;计算机运行VB软件设计的人机交互接口软件显示小车行驶状况,它还可通过微软的Speech SDK5.3识别操作者发出的语音指令,对小车进行控制。实验结果表明小车工作稳定,能够自主寻迹与避障,操作者可以遥控小车的行驶速度与方向。 相似文献
18.