首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基于动态递归神经网络的自适应PID控制   总被引:1,自引:1,他引:0  
吴志敏  李书臣 《控制工程》2004,11(3):216-219
提出一种基于动态递归神经网络的自适应PID控制方案,该控制系统由神经网络辨识器和神经网络控制器组成。辨识器采用单隐层的动态递归神经网络,网络结构为2-4-1;辨识算法为动态BP算法;控制器采用两层线性结构的神经网络,输入为系统偏差及其一阶、二阶微分,因此具有增量型PID控制结构。应用该控制系统对一非线性时变系统进行仿真研究,仿真结果表明该控制方案不仅具有良好的跟踪特性,而且对系统参数变化具有较强的鲁棒性。  相似文献   

2.
Two multilayer recurrent neural networks are presented for on-line synthesis of asymptotic state estimators for linear dynamical systems. The first recurrent neural network is composed of two layers to compute output gain matrices with desired poles. The second recurrent neural network is composed of four layers to compute output gain matrices with desired poles and minimal norm. The proposed multilayer recurrent neural networks are shown to be capable of synthesizing asymptotic slate estimators for linear dynamic systems in real time. The operating characteristics of the recurrent neural networks for state estimation are demonstrated by three illustrative examples  相似文献   

3.
A recurrent neural network for the optimal control of a group of interconnected dynamic systems is presented in this paper. On the basis of decomposition and coordination strategy for interconnected dynamic systems, the proposed neural network has a two-level hierarchical structure: several local optimization subnetworks at the lower level and one coordination subnetwork at the upper level. A goal-coordination method is used to coordinate the interactions between the subsystems. By nesting the dynamic equations of the subsystems into their corresponding local optimization subnetworks, the number of dimensions of the neural network can be reduced significantly. Furthermore, the subnetworks at both the lower and upper levels can work concurrently. Therefore, the computation efficiency, in comparison with the consecutive executions of numerical algorithms on digital computers, is increased dramatically. The proposed method is extended to the case where the control inputs of the subsystems are bounded. The stability analysis shows that the proposed neural network is asymptotically stable. Finally, an example is presented which demonstrates the satisfactory performance of the neural network  相似文献   

4.
In this paper, we present LMI-based synthesis tools for regional stability and performance of linear anti-windup compensators for linear control systems. We consider both static and dynamic compensators. Algorithms are developed that minimize the upper bound on the regional L2 gain for exogenous inputs with L2 norm bounded by a given value, and that minimize this upper bound with a guaranteed reachable set or domain of attraction. Based on the structure of the optimization problems, it is shown that for systems whose plants have poles in the closed left-half plane, plant-order dynamic anti-windup can achieve semiglobal exponential stability and finite L2 gain for exogenous inputs with L2 norm bounded by any finite value. The problems are studied in a general setting where the only requirement on the linear control system is well-posedness and internal stability. The effectiveness of the proposed techniques is illustrated with an example.  相似文献   

5.
An electro‐hydraulic servo system (EHSS) is a kind of system with the characteristics of time‐variant, serious nonlinearity, parameter and structural uncertainty, and uncertain load disturbance in most cases. These characteristics make it very difficult to realize highly accurate control by conventional methods. In order to solve the above problems, this paper introduces a recurrent type 2 fuzzy wavelet neural network to approximate the unknown nonlinear functions of the dynamic systems through tuning by the desired adaptive law. Based on the identification by recurrent type 2 fuzzy wavelet neural network, a L2 gain design method, combining gain adaptive variable sliding mode control with H infinity control, is proposed for load disturbance, thereby accommodating uncertainties that are the main factors affecting system stability and accuracy in EHSS. In this algorithm, a recurrent type 2 fuzzy wavelet neural network is employed to evaluate the unknown dynamic characteristics of the system and gain adaptive variable sliding mode control to compensate for evaluating errors, and H infinity control to suppress the effect on system by load disturbance. The experiment results show that the proposed system L2 gain design method can make the system exhibit strong robustness to parameter variation and load disturbance.  相似文献   

6.
直接自适应动态递归模糊神经网络控制及其应用   总被引:1,自引:0,他引:1  
针对某些仿射非线性系统中各状态变量间呈微分关系的特点,本文提出仅取某些可测状态变量 作为动态递归模糊神经网络(dynamic recurrent fuzzy neural network, DRFNN) 的输入,而由DRFNN 的反馈矩阵 描述系统内部动态关系的直接自适应DRFNN 控制算法,克服了将系统所有变量作为输入的传统模糊神经网 络(traditioanl fuzzy neural network, TFNN) 因某些不可测状态变量所导致的不可实现问题.在电液伺服系统中的 应用结果表明:直接自适应DRFNN 控制算法相对于TFNN 控制算法对系统稳态特性的改善具有较大的优越 性.  相似文献   

7.
基于一种修改的李亚普诺夫函数的自适应模糊滑模控制   总被引:13,自引:2,他引:13  
张天平 《自动化学报》2002,28(1):137-142
针对一类不确定非线性系统,基于一种修改的李亚普诺夫函数并利用Ⅱ型模糊系统的 逼近能力,提出了一种稳定自适应模糊控制器设计的新方案.该方案能够避免现有的一些自适 应模糊/神经网络控制器设计中对控制增益一阶导数上界的要求.通过理论分析,证明了闭环模 糊控制系统是全局稳定的,跟踪误差收敛到零.  相似文献   

8.
This paper addresses the adaptive tracking control scheme for switched nonlinear systems with unknown control gain sign. The approach relaxes the hypothesis that the upper bound of function control gain is known constant and the bounds of external disturbance and approximation errors of neural networks are known. RBF neural networks (NNs) are used to approximate unknown functions and an H-infinity controller is introduced to enhance robustness. The adaptive updating laws and the admissible switching signals have been derived from switched multiple Lyapunov function method. It’s proved that the resulting closed loop system is asymptotically Lyapunov stable such that the output tracking error performance and H-infinity disturbance attenuation level are well obtained. Finally, a simulation example of Forced Duffing systems is given to illustrate the effectiveness of the proposed control scheme and improve significantly the transient performance.  相似文献   

9.
针对一类控制增益函数及符号均未知的不确定非线性系统,基于反推滑模设计方法,提出一种鲁棒自适应神经网络控制方案.结合Nussbaum增益设计技术和神经网络逼近能力,取消了控制增益函数及符号已知的条件,应用积分型Lyapunov函数避免了控制器奇异性问题,并通过引入神经网络逼近误差和不确定干扰上界的自适应补偿项消除了建模误差和不确定干扰的影响.理论分析证明了闭环系统所有信号半全局一致终结有界,仿真结果验证了该方法的有效性.  相似文献   

10.
A gradient system with discontinuous righthand side that solves an underdetermined system of linear equations in the L/sub 1/ norm is presented. An upper bound estimate for finite time convergence to a solution set of the system of linear equations is shown by means of the Persidskii form of the gradient system and the corresponding nonsmooth diagonal type Lyapunov function. This class of systems can be interpreted as a recurrent neural network and an application devoted to solving least squares support vector machines (LS-SVM) is used as an example.  相似文献   

11.
基于神经网络的不确定机器人自适应滑模控制   总被引:13,自引:0,他引:13  
提出一种机器人轨迹跟踪的自适应神经滑模控制。该控制方案将神经网络的非线性映射能力与变结构控制理论相结合,利用RBF网络自适应学习系统不确定性的未知上界,神经网络的输出用于自适应修正控制律的切换增益。这种新型控制器能保证机械手位置和速度跟踪误差渐近收敛于零。仿真结果表明了该方案的有效性。  相似文献   

12.
针对一类具有死区非线性输入和未建模动态的非线性系统,提出一种自适应神经网络控制方法。该方法将后推技术和动态面技术结合,克服了计算复杂性问题,放宽了动态不确定性的假设,取消了神经网络逼近误差有界。借助中值定理和Young’s不等式,保证整个设计只需一个自适应参数,且控制增益只需存在一个上、下界。理论分析证明闭环系统所有信号半全局一致终结有界。仿真结果验证所提方案的有效性。  相似文献   

13.
An RBF neural network-based adaptive control is proposed for Single-Input and Single-Output (SISO) linearisable nonlinear systems in this paper. It is shown that a SISO nonlinear system is first linearised by using the differential geometric approach in the state space, and the linearised nonlinear system is then treated as a partially known system. The known dynamics are used to design a nominal feedback controller to stabilise the nominal system, and an adaptive RBF neural network-based compensator is then designed to compensate for the effects of uncertain dynamics. The main function of the RBF neural network in this work is to adaptively learn the upper bound of the system uncertainty, and the output of the neural network is then used to adaptively adjust the gain of the compensator so that the strong robustness with respect to unknown dynamics can be obtained, and the tracking error between the plant output and the desired reference signal can asymptotically converge to zero. A simulation example is performed in support of the proposed scheme.  相似文献   

14.
基于神经网络的PMSM自适应滑模控制   总被引:7,自引:0,他引:7  
结合滑模控制和神经网络各自的优点,对永磁同步电机(PMSM)提出了一种基于神经网络的PMSM自适应滑模控制方案.首先设计了带积分操作的滑模变结构位置控制器,通过递归神经网络的在线学习来实时估计系统参数变化和外部负载扰动等不确定性的界限,减小滑模控制器的控制量.进而,在滑模控制器中又引入饱和函数取代符号函数,进一步减弱"抖振"现象.理论分析和实验仿真对比研究的结果表明所提出方法具有优越的动态性能和鲁棒性.  相似文献   

15.
Trajectory generation and modulation using dynamic neural networks   总被引:1,自引:0,他引:1  
Generation of desired trajectory behavior using neural networks involves a particularly challenging spatio-temporal learning problem. This paper introduces a novel solution, i.e., designing a dynamic system whose terminal behavior emulates a prespecified spatio-temporal pattern independently of its initial conditions. The proposed solution uses a dynamic neural network (DNN), a hybrid architecture that employs a recurrent neural network (RNN) in cascade with a nonrecurrent neural network (NRNN). The RNN generates a simple limit cycle, which the NRNN reshapes into the desired trajectory. This architecture is simple to train. A systematic synthesis procedure based on the design of relay control systems is developed for configuring an RNN that can produce a limit cycle of elementary complexity. It is further shown that a cascade arrangement of this RNN and an appropriately trained NRNN can emulate any desired trajectory behavior irrespective of its complexity. An interesting solution to the trajectory modulation problem, i.e., online modulation of the generated trajectories using external inputs, is also presented. Results of several experiments are included to demonstrate the capabilities and performance of the DNN in handling trajectory generation and modulation problems.  相似文献   

16.
The following learning problem is considered, for continuous-time recurrent neural networks having sigmoidal activation functions. Given a “black box” representing an unknown system, measurements of output derivatives are collected, for a set of randomly generated inputs, and a network is used to approximate the observed behavior. It is shown that the number of inputs needed for reliable generalization (the sample complexity of the learning problem) is upper bounded by an expression that grows polynomially with the dimension of the network and logarithmically with the number of output derivatives being matched.  相似文献   

17.
The following learning problem is considered, for continuous-time recurrent neural networks having sigmoidal activation functions. Given a “black box” representing an unknown system, measurements of output derivatives are collected, for a set of randomly generated inputs, and a network is used to approximate the observed behavior. It is shown that the number of inputs needed for reliable generalization (the sample complexity of the learning problem) is upper bounded by an expression that grows polynomially with the dimension of the network and logarithmically with the number of output derivatives being matched.  相似文献   

18.
非线性关联系统自适应神经网络输出反馈分散控制   总被引:1,自引:1,他引:0  
针对一类带有完全未知关联项的非线性大系统,提出一种自适应神经网络输出反馈分散控制方法.采用神经网络逼近未知的关联项,因此对关联项常做的假设如匹配条件,被上界函数所界定等不再要求.在神经元输入中采用参考信号取代关联信号,从而成功地避免了对关联信号的微分.保证了闭环系统所有信号半全局一致最终有界,证明了跟踪误差收敛于一个包含原点的小残集.  相似文献   

19.
This paper presents a framework for incremental neural learning (INL) that allows a base neural learning system to incrementally learn new knowledge from only new data without forgetting the existing knowledge. Upon subsequent encounters of new data examples, INL utilizes prior knowledge to direct its incremental learning. A number of critical issues are addressed including when to make the system learn new knowledge, how to learn new knowledge without forgetting existing knowledge, how to perform inference using both the existing and the newly learnt knowledge, and how to detect and deal with aged learnt systems. To validate the proposed INL framework, we use backpropagation (BP) as a base learner and a multi-layer neural network as a base intelligent system. INL has several advantages over existing incremental algorithms: it can be applied to a broad range of neural network systems beyond the BP trained neural networks; it retains the existing neural network structures and weights even during incremental learning; the neural network committees generated by INL do not interact with one another and each sees the same inputs and error signals at the same time; this limited communication makes the INL architecture attractive for parallel implementation. We have applied INL to two vehicle fault diagnostics problems: end-of-line test in auto assembly plants and onboard vehicle misfire detection. These experimental results demonstrate that the INL framework has the capability to successfully perform incremental learning from unbalanced and noisy data. In order to show the general capabilities of INL, we also applied INL to three general machine learning benchmark data sets. The INL systems showed good generalization capabilities in comparison with other well known machine learning algorithms.  相似文献   

20.
Boolean input systems are in common used in the electric industry. Power supplies include such systems and the power converter represents these. For instance, in power electronics, the control variable are the switching ON and OFF of components as thyristors or transistors. The purpose of this paper is to use neural network (NN) to control continuous systems with Boolean inputs. This method is based on classification of system variations associated with input configurations. The classical supervised backpropagation algorithm is used to train the networks. The training of the artificial neural network and the control of Boolean input systems are presented. The design procedure of control systems is implemented on a nonlinear system. We apply those results to control an electrical system composed of an induction machine and its power converter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号