首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LDPC码的改进及其应用的研究   总被引:4,自引:1,他引:3  
在介绍LDPC(Low Density Parity Code)低密度校验码的基本原理的基础上,针对任意离散无记忆信道的传输,从两个方面对其结构进行了改进。这种改进的LDPC码是定义在有限域GF(q)上的非正则LDPC码,较之正则LDPC码具有更好的性能。采用改进的非正则LDPC码,经过最大似然概率译码,能够实现以任意逼近任何离散无记忆信道容量的速率的可靠通信。同时,讨论了对应于这种码结构的实际的迭代译码方法,并简单介绍了这种改进的非正则LDPC码在OFDM系统、压缩图像传输等方面的应用。  相似文献   

2.
The performance of nonbinary linear block codes is studied in this paper via the derivation of new upper bounds on the block error probability under maximum-likelihood (ML) decoding. The transmission of these codes is assumed to take place over a memoryless and symmetric channel. The new bounds, which are based on the Gallager bounds and their variations, are applied to the Gallager ensembles of nonbinary and regular low-density parity-check (LDPC) codes. These upper bounds are also compared with sphere-packing lower bounds. This study indicates that the new upper bounds are useful for the performance evaluation of coded communication systems which incorporate nonbinary coding techniques.   相似文献   

3.
We describe a family of instanton-based optimization methods developed recently for the analysis of the error floors of low-density parity-check (LDPC) codes. Instantons are the most probable configurations of the channel noise which result in decoding failures. We show that the general idea and the respective optimization technique are applicable broadly to a variety of channels, discrete or continuous, and variety of sub-optimal decoders. Specifically, we consider: iterative belief propagation (BP) decoders, Gallager type decoders, and linear programming (LP) decoders performing over the additive white Gaussian noise channel (AWGNC) and the binary symmetric channel (BSC). The instanton analysis suggests that the underlying topological structures of the most probable instanton of the same code but different channels and decoders are related to each other. Armed with this understanding of the graphical structure of the instanton and its relation to the decoding failures, we suggest a method to construct codes whose Tanner graphs are free of these structures, and thus have less significant error floors.  相似文献   

4.
We present a setting for decoding of low-density parity-check (LDPC) codes jointly with channel estimation, which is suitable for transmission over memoryless compound channels. We show that the performance of the combined scheme can be rigorously evaluated by means of density evolution, and focus on density evolution as a tool for designing a channel estimator that matches not only to the channel, but also to the LDPC ensemble, as well. The utility of the concept is exemplified for a compound binary symmetric channel and an unknown phase additive white Gaussian channel.  相似文献   

5.
The most powerful channel-coding schemes, namely, those based on turbo codes and low-density parity-check (LDPC) Gallager codes, have in common the principle of iterative decoding. However, the relative coding structures and decoding algorithms are substantially different. This paper shows that recently proposed novel coding structures bridge the gap between these two schemes. In fact, with properly chosen component convolutional codes, a turbo code can be successfully decoded by means of the decoding algorithm used for LDPC codes, i.e., the belief-propagation algorithm working on the code Tanner graph. These new turbo codes are here nicknamed "turbo Gallager codes." Besides being interesting from a conceptual viewpoint, these schemes are important on the practical side because they can be decoded in a fully parallel manner. In addition to the encoding complexity advantage of turbo codes, the low decoding complexity allows the design of very efficient channel-coding schemes.  相似文献   

6.
In this letter, we discuss the performance of low-density parity-check (LDPC) codes on memoryless channels. Using a recently proposed analysis technique based on extrinsic information transfer (EXIT) charts, we present an interpretation of the known fact that the bit-error rate (BER) performance of an ensemble of LDPC codes shows little dependence on the specific memoryless channel. This result has been partially observed in the literature for symmetric channels and is here extended to asymmetric channels. We conjecture and demonstrate that the performance of an ensemble of LDPC codes depends primarily and solely on the mutual information (MI) between the input and the output of the channel. As a validation of this conjecture, we compare the performance of a few LDPC codes with various rates for five representative memoryless (both symmetric and asymmetric) channels, obtaining results in excellent agreement with the EXIT chart-based prediction  相似文献   

7.
The moderate complexity of low-density parity-check (LDPC) codes under iterative decoding is attributed to the sparseness of their parity-check matrices. It is therefore of interest to consider how sparse parity-check matrices of binary linear block codes can be a function of the gap between their achievable rates and the channel capacity. This issue was addressed by Sason and Urbanke, and it is revisited in this paper. The remarkable performance of LDPC codes under practical and suboptimal decoding algorithms motivates the assessment of the inherent loss in performance which is attributed to the structure of the code or ensemble under maximum-likelihood (ML) decoding, and the additional loss which is imposed by the suboptimality of the decoder. These issues are addressed by obtaining upper bounds on the achievable rates of binary linear block codes, and lower bounds on the asymptotic density of their parity-check matrices as a function of the gap between their achievable rates and the channel capacity; these bounds are valid under ML decoding, and hence, they are valid for any suboptimal decoding algorithm. The new bounds improve on previously reported results by Burshtein and by Sason and Urbanke, and they hold for the case where the transmission takes place over an arbitrary memoryless binary-input output-symmetric (MBIOS) channel. The significance of these information-theoretic bounds is in assessing the tradeoff between the asymptotic performance of LDPC codes and their decoding complexity (per iteration) under message-passing decoding. They are also helpful in studying the potential achievable rates of ensembles of LDPC codes under optimal decoding; by comparing these thresholds with those calculated by the density evolution technique, one obtains a measure for the asymptotic suboptimality of iterative decoding algorithms  相似文献   

8.
改进的离散字母表迭代译码算法研究   总被引:1,自引:0,他引:1  
为了优化LDPC迭代译码性能和降低算法复杂度,提出了一种改进的基于Gallager A算法的2b离散字母表迭代译码算法。在每一轮迭代中,Tanner图上的校验节点与变量节点之间所传递的消息有1b表示符号值,另1b反映码字结构特性,其中变量节点更新规则是通过查表法来实现的。在二元对称信道下针对列重为3的规则LDPC码做了仿真实验,仿真结果表明该算法性能明显优于原算法,并且具有较低的复杂度。  相似文献   

9.
针对低密度奇偶校验(LDPC)码较大的译码复杂度和RAM占用,该文提出了一种低译码复杂度的Turbo架构LDPC码并行交织级联Gallager码 (Parallel Interleaved Concatenated Gallager Code,PICGC)。该文给出了PICGC的设计方法和编译码算法,并分析比较了PICGC译码器与LDPC译码器所需的RAM存储量,推导出RAM节省比的上界。理论分析和仿真结果表明,PICGC以纠错性能略微降低为代价,有效地降低译码复杂度和RAM存储量,且译码时延并未增加,是一种有效且易于实现的信道编码方案。  相似文献   

10.
This paper investigates decoding of low-density parity-check (LDPC) codes over the binary erasure channel (BEC). We study the iterative and maximum-likelihood (ML) decoding of LDPC codes on this channel. We derive bounds on the ML decoding of LDPC codes on the BEC. We then present an improved decoding algorithm. The proposed algorithm has almost the same complexity as the standard iterative decoding. However, it has better performance. Simulations show that we can decrease the error rate by several orders of magnitude using the proposed algorithm. We also provide some graph-theoretic properties of different decoding algorithms of LDPC codes over the BEC which we think are useful to better understand the LDPC decoding methods, in particular, for finite-length codes.  相似文献   

11.
Error-correcting capabilities of concatenated codes with maximum distance separable (MDS) outer codes and time-varying inner codes, used on memoryless discrete channels with maximum-likelihood decoding, are investigated. It is proved that, asymptotically, the Gallager random coding theorem can be obtained for all rates by such codes. Further, the expurgated coding theorem, as well, is proved to be valid for all rates on regular channels. The latter result implies that the Gilbert-Varshamov bound for block codes over any finite field can be obtained asymptotically for all rates by linear concatenated codes.  相似文献   

12.
We propose an augmented belief propagation (BP) decoder for low-density parity check (LDPC) codes which can be utilized on memoryless or intersymbol interference channels. The proposed method is a heuristic algorithm that eliminates a large number of pseudocodewords that can cause nonconvergence in the BP decoder. The augmented decoder is a multistage iterative decoder, where, at each stage, the original channel messages on select symbol nodes are replaced by saturated messages. The key element of the proposed method is the symbol selection process, which is based on the appropriately defined subgraphs of the code graph and/or the reliability of the information received from the channel. We demonstrate by examples that this decoder can be implemented to achieve substantial gains (compared to the standard locally-operating BP decoder) for short LDPC codes decoded on both memoryless and intersymbol interference Gaussian channels. Using the Margulis code example, we also show that the augmented decoder reduces the error floors. Finally, we discuss types of BP decoding errors and relate them to the augmented BP decoder.  相似文献   

13.
We consider coded data transmission over a binary-input output-symmetric memoryless channel using a binary linear code. In order to understand the performance of maximum-likelihood (ML) decoding, one studies the codewords, in particular the minimal codewords, and their Hamming weights. In the context of linear programming (LP) decoding, one's attention needs to be shifted to the pseudo-codewords, in particular, to the minimal pseudo-codewords and their pseudo-weights. In this paper, we investigate some families of codes that have good properties under LP decoding, namely certain families of low-density parity-check (LDPC) codes that are derived from projective and Euclidean planes: we study the structure of their minimal pseudo-codewords and give lower bounds on their pseudo-weight. Besides this main focus, we also present some results that hold for pseudo-codewords and minimal pseudo-codewords of any Tanner graph, and we highlight how the importance of minimal pseudo-codewords under LP decoding varies depending on which binary-input output-symmetric memoryless channel is used.  相似文献   

14.
Low-density parity-check (LDPC) codes, proposed by Gallager, emerged as a class of codes which can yield very good performance on the additive white Gaussian noise channel as well as on the binary symmetric channel. LDPC codes have gained lots of importance due to their capacity achieving property and excellent performance in the noisy channel. Belief propagation (BP) algorithm and its approximations, most notably min-sum, are popular iterative decoding algorithms used for LDPC and turbo codes. The trade-off between the hardware complexity and the decoding throughput is a critical factor in the implementation of the practical decoder. This article presents introduction to LDPC codes and its various decoding algorithms followed by realisation of LDPC decoder by using simplified message passing algorithm and partially parallel decoder architecture. Simplified message passing algorithm has been proposed for trade-off between low decoding complexity and decoder performance. It greatly reduces the routing and check node complexity of the decoder. Partially parallel decoder architecture possesses high speed and reduced complexity. The improved design of the decoder possesses a maximum symbol throughput of 92.95 Mbps and a maximum of 18 decoding iterations. The article presents implementation of 9216 bits, rate-1/2, (3, 6) LDPC decoder on Xilinx XC3D3400A device from Spartan-3A DSP family.  相似文献   

15.
We present an analysis under the iterative decoding of coset low-density parity-check (LDPC) codes over GF(q), designed for use over arbitrary discrete-memoryless channels (particularly nonbinary and asymmetric channels). We use a random- coset analysis to produce an effect that is similar to output symmetry with binary channels. We show that the random selection of the nonzero elements of the GF(q) parity-check matrix induces a permutation-invariance property on the densities of the decoder messages, which simplifies their analysis and approximation. We generalize several properties, including symmetry and stability from the analysis of binary LDPC codes. We show that under a Gaussian approximation, the entire q-1-dimensional distribution of the vector messages is described by a single scalar parameter (like the distributions of binary LDPC messages). We apply this property to develop extrinsic information transfer (EXIT) charts for our codes. We use appropriately designed signal constellations to obtain substantial shaping gains. Simulation results indicate that our codes outperform multilevel codes at short block lengths. We also present simulation results for the additive white Gaussian noise (AWGN) channel, including results within 0.56 dB of the unrestricted Shannon limit (i.e., not restricted to any signal constellation) at a spectral efficiency of 6 bits/s/Hz.  相似文献   

16.
Towards the goal of achieving better error correction performance in data storage systems, iterative soft decoding of low density parity check (LDPC) codes and soft-decision decoding of Reed-Solomon (RS) codes have started receiving increasing research attention. However, even with increased computing power, complexities of soft-decision decoding algorithms are still too high for real products which require high throughput and small hardware area. Another problem is that the performance gains of those approaches are smaller for magnetic recording channels than they are for memoryless additive white Gaussian noise (AWGN) channels. We propose a new soft-decision decoding algorithm (based on the Chase algorithm), which takes advantage of pattern reliability instead of symbol reliability or bit reliability. We also present a modified Viterbi algorithm that provides probable error patterns with corresponding reliabilities. Simulation results of the proposed algorithms over the partial response (PR) channel show attractive performance gains. The proposed algorithm dramatically reduces the number of iterations compared to the conventional Chase2 algorithm over the PR channel.  相似文献   

17.
Universal estimation strategies are proposed to improve channel decoding of sequences that contain context based redundancy. The new methods combine techniques from universal compression, such as the Burrows-Wheeler Transform (BWT) and segmentation of piecewise stationary memoryless sources (PSMS's) with recently proposed methods of discrete denoising. Simulation results with systematic low density parity check (LDPC) codes show significant improvements of the proposed methods on standard decoding, even when the actual sequence context model is unknown in advance. The combined methods inherit advantages of each of the separate methods.  相似文献   

18.
This correspondence studies the performance of the iterative decoding of low-density parity-check (LDPC) code ensembles that have linear typical minimum distance and stopping set size. We first obtain a lower bound on the achievable rates of these ensembles over memoryless binary-input output-symmetric channels. We improve this bound for the binary erasure channel. We also introduce a method to construct the codes meeting the lower bound for the binary erasure channel. Then, we give upper bounds on the rate of LDPC codes with linear minimum distance when their right degree distribution is fixed. We compare these bounds to the previously derived upper bounds on the rate when there is no restriction on the code ensemble.  相似文献   

19.
An efficient method for analyzing the performance of finite-length low-density parity-check (LDPC) codes in the waterfall region, when transmission takes place on a memoryless binary-input output-symmetric channel is proposed. This method is based on studying the variations of the channel quality around its expected value when observed during the transmission of a finite-length codeword. We model these variations with a single parameter. This parameter is then viewed as a random variable and its probability distribution function is obtained. Assuming that a decoding failure is the result of an observed channel worse than the code?s decoding threshold, the block error probability of finite-length LDPC codes under different decoding algorithms is estimated. Using an extrinsic information transfer chart analysis, the bit error probability is obtained from the block error probability. Different parameters can be used for modeling the channel variations. In this work, two of such parameters are studied. Through examples, it is shown that this method can closely predict the performance of LDPC codes of a few thousand bits or longer in the waterfall region.  相似文献   

20.
We study the average error probability performance of binary linear code ensembles when each codeword is divided into J subcodewords with each being transmitted over one of J parallel channels. This model is widely accepted for a number of important practical channels and signaling schemes including block-fading channels, incremental redundancy retransmission schemes, and multicarrier communication techniques for frequency-selective channels. Our focus is on ensembles of good codes whose performance in a single channel model is characterized by a threshold behavior, e.g., turbo and low-density parity-check (LDPC) codes. For a given good code ensemble, we investigate reliable channel regions which ensure reliable communications over parallel channels under maximum-likelihood (ML) decoding. To construct reliable regions, we study a modifed 1961 Gallager bound for parallel channels. By allowing codeword bits to be randomly assigned to each component channel, the average parallel-channel Gallager bound is simplified to be a function of code weight enumerators and channel assignment rates. Special cases of this bound, average union-Bhattacharyya (UB), Shulman-Feder (SF), simplified-sphere (SS), and modified Shulman-Feder (MSF) parallel-channel bounds, allow for describing reliable channel regions using simple functions of channel and code spectrum parameters. Parameters describing the channel are the average parallel-channel Bhattacharyya noise parameter, the average channel mutual information, and parallel Gaussian channel signal-to-noise ratios (SNRs). Code parameters include the union-Bhattacharyya noise threshold and the weight spectrum distance to the random binary code ensemble. Reliable channel regions of repeat-accumulate (RA) codes for parallel binary erasure channels (BECs) and of turbo codes for parallel additive white Gaussian noise (AWGN) channels are numerically computed and compared with simulation results based on iterative decoding. In addition, an examp  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号