共查询到20条相似文献,搜索用时 53 毫秒
1.
2.
3.
4.
针对光照条件突然变化情况下混合目标模型Mean Shift算法无法准确跟踪目标的缺点,提出了一种基于SIFT特征一致性的目标跟踪算法.算法用SIFT特征来匹配帧间的感兴趣区域,同时使用包含初始帧信息和前一帧信息的混合目标模型Mean Shift算法计算帧间感兴趣区域的直方图,以直方图分布距离最小为原则计算Mean Sh... 相似文献
5.
动态场景下的运动目标跟踪方法研究 总被引:10,自引:2,他引:10
复杂背景下实时目标的跟踪与识别属于自动目标识别(ATR)研究领域,包括对目标的分割、特征提取和目标识别等几个方面。由于现在的目标跟踪方法都是面向特定应用环境的,所以不存在一个算法能通用所有的场景。探索并明确算法的特点和应用环境,对于在实际应用中选择合适的方法是十分必要的。目前的大部分文章都是根据具体适应场景分析各自的方法,缺乏对跟踪方法的系统性研究,该文简要介绍了动态场景下单个运动目标的几种典型跟踪方法,在算法内容、假设条件、先验知识、理论计算量、实现难点及改进措施等方面进行了分析,并对研究难点及未来的发展趋势作了较为详细的阐述。 相似文献
6.
针对人体目标所具有非刚性、非对称性、多态性的特点,提出了自适应模板更新的人体目标跟踪算法.基于Kalman滤波器,根据人体形态变化自适应调整目标像素的权值,从而获得更柔性、更合理的模板.将该方法与mean shift跟踪算法相结合应用于人体目标跟踪,通过实验证明具有很好的鲁棒性和稳定性. 相似文献
7.
一种复杂场景下的运动目标跟踪算法 总被引:1,自引:2,他引:1
提出了一种基于跟踪窗口自适应和抗遮挡的目标跟踪算法。采用Mean Shift算法确定当前帧的目标位置,最优选取核函数带宽,使跟踪窗口能够根据目标尺寸大小作出自适应调整。利用Bhattacharyya系数作为遮挡的判断依据,当目标遮挡时引入卡尔曼滤波器估计目标的运动信息,进行后续状态预测。实验表明,该算法能有效跟踪复杂场景下的运动目标。 相似文献
8.
《计算机应用与软件》2016,(11)
针对传统的Meanshift算法在连续的同色调背景干扰下无法准确、持续跟踪目标的问题,提出一种基于Kalman-optical flow(KOF)的改进Meanshift目标跟踪算法。首先,通过基于色调空间的光流检测对Meanshift窗口区域内的特征点进行建模,获得其图像坐标;然后,利用Kalman滤波的速度预估排除背景特征点,得到基于目标模型特征点的空间约束条件;最后,将得到的空间约束条件结合传统Meanshift算法中的色调约束条件,构建新的反投影直方图,并将新的反投影图作为Meanshift的概率密度图进行迭代,从而完成目标跟踪。实验表明,在连续的同色调背景区域的干扰下,该算法仍可以准确、持续地跟踪目标。 相似文献
9.
10.
视频序列中人体运动目标的检测与跟踪研究 总被引:3,自引:0,他引:3
提出一种视频序列中人体运动目标的精确检测、提取以硬跟踪算法。该算法采用帧间差闽值法(简称TIFD)实现快速精确地检测和提取目标,使用扩展的Kalman滤波器预测运动目标下一时刻可能处于的区域,缩小了目标跟踪时的搜索范围。充分利用运行目标检测的结果,提高了目标的匹配效率及跟踪速度。同时给出了相应的实验结果,结果表明方法是比较实用的,能满足人体运动分析的基本要求。 相似文献
11.
针对传统光流跟踪算法计算复杂度高、受噪声影响大的问题,提出了一种基于尺度不变特征变换(Scale Invariant Feature Transform,SIFT)和卡尔曼滤波器的特征点光流跟踪算法。首先,利用SIFT算法提取图像中的特征点;然后,根据最小绝对值误差准则对运动目标的特征点进行匹配,建立卡尔曼滤波器方程来计算特征点光流;最后,通过光流特征聚类实现运动目标的识别与跟踪。实验结果表明,算法对自然场景中的运动目标具有良好的跟踪特性,稳定性好,计算量小,易于实现。 相似文献
12.
13.
Mean shift跟踪算法能够有效跟踪视频序列中的各种运动目标,但是该算法无法准确地跟踪视频中高速运动目标.通过分析mean shift算法的原理,指出mean shift对高速运动目标跟踪失效的原因,提出一种基于mean shift的粒子滤波跟踪的新算法.通过实验比较,该算法能改善了Mean shift算法对高速运动目标的效果,并且在存在干扰目标的情况下具备良好的跟踪效果. 相似文献
14.
15.
复杂背景下运动目标的实时跟踪 总被引:3,自引:0,他引:3
复杂背景下的实时目标跟踪是计算机视觉领域的热点问题。提出了一种融合均值平移和粒子滤波的方法。综合了二者的效率和可靠性等优点。实验结果表明,该融合算法在复杂背景下的跟踪具有较好的实时性和可靠性。 相似文献
16.
视频图像序列中运动目标的提取与跟踪 总被引:1,自引:0,他引:1
提出一种摄像机静止条件下视频图像运动目标提取与跟踪的方法。本文首先提出了一种有效的阴影去除算法检测运动目标,然后采用基于目标颜色直方图的相关匹配,使用Bhattacharyya系数度量目标模型与预测模型间的相似度,选出最优相似模型作为当前的目标模型,实现了对目标的跟踪。实验结果表明该算法是可行有效的。 相似文献
17.
18.
19.
胡本川张国宾张建龙王勇 《数据采集与处理》2016,31(4):799-808
针对无人机可见光图像极小目标跟踪问题,本文提出一种基于改进卡尔曼滤波的
(Tracking before detection,TBD)跟踪方法。首先利用检测算法定位目标位置作为卡尔曼滤波的测量值,检测过程中的匹配相似度参数作为卡尔曼滤波测量噪声协方差矩阵的参照依据,其次利用卡尔曼滤波建立跟踪框架预测下一帧的目标位置,最后检测模块以预测位置为
参考位置进行局部搜索,完成整个检测跟踪过程。为了提高跟踪效率,本文根据检测和预测位置积累误差判决检测模式,误差超过门限值则采取全局检测模式消除积累误差,否
则使用局部检测模式,降低TBD跟踪算法的运算复杂度。仿真实验证明,本文方法可以有效检测跟踪极小目标,提高跟踪的实时处理能力。 相似文献