首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
以电熔白刚玉、电熔莫来石、氧化铝微粉、二氧化硅微粉和硅溶胶为主要原料,制备了硅溶胶、二氧化硅微粉结合刚玉浇注料以及硅溶胶结合刚玉-莫来石浇注料,研究了不同温度处理后浇注料的常温性能、冷态和热态抗折强度以及弹性模量等性能,并进行了差热、X射线衍射和显微结构分析。研究结果表明:1)与二氧化硅微粉相比,硅溶胶能够显著提高浇注料800℃以下的抗折强度;硅溶胶结合和二氧化硅微粉结合的机制以及随温度变化的规律基本一致。2)高温下刚玉骨料中β-Al2O3分解产生的Na2O大部分进入液相,使液相中Na2O含量增加,不利于浇注料中原位生成莫来石,并降低材料的高温强度。3)莫来石加入到硅溶胶结合刚玉浇注料中,能显著降低浇注料的弹性模量,借助于高温下液相的传质作用,莫来石彼此连接形成网络,从而增加了浇注料的强度。  相似文献   

2.
以电熔板状刚玉及莫来石为骨料,以白刚玉粉、α-Al2O3微粉及莫来石粉为细粉,研制了以硅溶胶为结合剂的刚玉-莫来石浇注料.该浇注料已成功应用于武钢铁厂风口处和烧结厂点火炉的炉项及侧墙,有效地简化了干燥和烘烤工艺,缩短了炉衬的烘烤时间.  相似文献   

3.
对比测试了常温浇注成型及在模拟热态修补条件下浇注成型的硅溶胶结合刚玉-莫来石快干浇注料分别在815、1 100和1 400℃保温3 h热处理后的常温抗折强度、常温耐压强度、体积密度和加热永久线变化以及常温浇注成型的硅溶胶结合刚玉-莫来石浇注料和矾土水泥结合刚玉质浇注料的抗热震性,并在钢厂对硅溶胶结合刚玉-莫来石浇注料进行了现场应用试验。结果表明:硅溶胶结合刚玉-莫来石浇注料的烘干强度与普通低水泥刚玉质浇注料的相当,815和1 100℃热处理后强度比烘干强度高;硅溶胶结合刚玉-莫来石浇注料热震循坏(1 100℃,水冷)100次后基本上没有出现裂纹,其耐压强度损失率仅为18.7%;在模拟热态条件下成型的硅溶胶结合刚玉-莫来石浇注料的性能与常温浇注成型的相当。在现场应用试验中,硅溶胶结合刚玉-莫来石浇注料的脱模时间和烘炉时间大大缩短,并且可以热态浇注,具有良好的使用性能。  相似文献   

4.
5.
烧结点火炉用莫来石质浇注料的研制与应用   总被引:1,自引:0,他引:1  
针对烧结点火炉的使用工况要求,保持特级矾土骨料占70%(质量分数,下同)、结合剂纯铝酸钙水泥占5%、活性α-Al2O3微粉占4%不变,其余21%的细粉为不同组成的莫来石细粉、SiO2微粉、添加剂(分别为蓝晶石粉、碳化硅粉、硅线石粉),同时外加0.15%的三聚磷酸钠研制了莫来石质浇注料,并研究了SiO2微粉加入量(分别为0、1%、2%、3%、4%)和各添加剂加入量(分别为1%、2%、3%、4%、5%)对浇注料烘干或烧后(1 350℃3 h)性能的影响.结果发现,加入3%的SiO2微粉,同时加入3%的蓝晶石和4%的碳化硅时,研制的莫来石质浇注料性能较优良.该浇注料在几家钢厂的烧结点火炉上实际使用寿命目前已超过4年,证明使用效果较好.  相似文献   

6.
硅溶胶对刚玉浇注料性能的影响   总被引:1,自引:0,他引:1  
以5~8、3~5、1~3及≤1 mm的电熔刚玉为骨料,致密刚玉粉(≤0.074 mm)、白刚玉粉(≤0.043mm)及α-Al2O3微粉为细粉,矾土水泥和硅溶胶为结合剂,按骨料、粉料质量比为64∶36配料制成试样,自然养护后于110℃24 h烘干,然后分别于815℃3 h、1 100℃3 h和1 400℃3 h热处理。对处理后试样进行了常温抗折强度、耐压强度、体积密度、线变化率和抗热震性能的检测及显微结构分析。结果表明:硅溶胶结合浇注料于1 100℃3 h处理后的抗折强度和耐压强度分别达到27.1和178 MPa,远高于相同温度下水泥结合浇注料的;硅溶胶结合浇注料在20~1 100℃水冷热震循坏100次后基本没有出现裂纹,其耐压强度损失率仅为24.4%,而水泥结合的浇注料热震循坏49次后就完全开裂。  相似文献   

7.
8.
为了提高出铁口耐火材料的应用性能,以致密刚玉和碳化硅为骨料,白刚玉粉、活性α-Al2O3微粉及碳化硅粉为细粉,硅溶胶为结合剂,研制了硅溶胶结合刚玉-碳化硅质浇注料。通过性能检测表明:该浇注料经中高温处理后具有较高的强度(经810℃3 h和1 400℃3 h处理后的抗折强度和耐压强度分别达到10.0和80.0MPa以上),良好的抗渣侵蚀性和抗热震性(烘干后70 mm×70 mm×70 mm样块经1 100℃水冷热震>100次);通过在高炉出铁口泥套处的成功热修补应用表明:该浇注料具有较好的高温施工性能和可快速烘烤性,有效地简化了干燥和烘烤工艺,缩短了高炉休风时间,从而提高高炉生产效率。  相似文献   

9.
10.
ρ-Al2O3加入量对莫来石-刚玉浇注料性能的影响   总被引:1,自引:0,他引:1  
以烧结莫来石(w(Al2O3)>45%)、电熔莫来石(w(Al2O3)>70%)、刚玉(w(Al2O3)>99%)、α-Al2O3微粉(w(Al2O3)>99.5%)、SiO2微粉(w(SiO2)>92%)、ρ-Al2O3微粉(w(Al2O3)>83.0%)等为主要原料,制备了莫来石-刚玉浇注料试样,经110℃24 h、1 000℃3 h和1 400℃3 h处理,研究了ρ-Al2O3加入量(w)分别为1%、2%、3%、4%和5%对莫来石-刚玉浇注料性能的影响。结果表明:随着ρ-Al2O3加入量的增加,莫来石-刚玉浇注料的体积密度下降,显气孔率增大,抗热震性和抗渣性逐渐变好。110℃24 h处理后强度逐渐增大;1 000℃和1 400℃处理后强度和永久线变化率则是先增加后减小,当ρ-Al2O3加入量为2%时达最大;试样的高温抗折强度先增加后减小,以ρ-Al2O3加入量为3%时最大。  相似文献   

11.
为了研究硅溶胶结合Al2O3-SiC-C材料的力学性能,以电熔棕刚玉和碳化硅为主要原料,硅溶胶为结合剂,制备了Al2O3-SiC-C铁沟浇注料,研究了其在110、300、500、700、900、1 100、1 300、1 450℃热处理后的常温物理性能和高温(1 400℃)抗折强度,并借助XRD、SEM等进行物相和显微结构分析。结果表明:随着热处理温度的升高,试样常温强度增加,烧后线变化率增大,体积密度先减小后增大,显气孔率先增大后减小,转折温度在700℃;高温抗折强度超过6 MPa。其原因在于:在中低温下,硅溶胶脱水形成—Si—O—Si—凝胶网络结构,保证了浇注料的中低温强度,700℃时因试样大量脱水而使得显气孔率最大,体积密度最小;在高温下,试样中因形成大量纤维状莫来石而为浇注料提供了较高的常温强度和高温强度。  相似文献   

12.
介绍了以w(Al2O3)≥60%的莫来石骨料和w(Al2O3)≥80%的矾土粉料为主要原料,硅溶胶为结合剂的一种高炉维修用压入料的性能及其应用。同树脂结合的压入料相比,硅溶胶结合的压入料从生产、施工到应用,对环境都基本上没有污染,而且具有较短的固化时间,较好的理化性能,尤其具有很好的体积稳定性和抗热震性;几个厂家的实际应用结果表明,硅溶胶结合的压入料具有较好的施工性能和使用性能。  相似文献   

13.
In order to overcome the shortcoming of the calcium aluminate cement (CAC) bonded castables, we prepared corundum‐spinel castables using silica sol as binder and tabular corundum, sintered magnesia‐alumina spinel, and reactive alumina as raw materials in this study. The effect of spinel grain size and solid content of silica sol on the flow value, sintering, mechanical strength and microstructure of the specimens treated at varying temperature of 400, 1000, 1500, and 1650°C for 5 hours in an air atmosphere were studied by SEM and EDS analyses. The results indicate that silica sol is suitable as a binder for corundum‐spinel systems. And silica sol with solid content of 25% bonded samples containing ≤90 μm spinel perform quite better than the others. At the same time, silica sol bonded samples had high strength in medium temperature. This is because that the closer proximity of silica sol and alumina powder and the high activity of nanometer SiO2 in silica sol are beneficial for the reaction of SiO2 and Al2O3 to generate mullite needed for reinforcement of castables matrix.  相似文献   

14.
《Ceramics International》2017,43(12):8850-8857
Silica sol bonded castables have obvious advantages over low cement or hydratable alumina bonded castables in drying performance and sintering properties for SiC castables. However, they are not widely used due to their weak strength at low temperature. The efficiency of bonding network for silica sol bonded SiC castable in the presence of different reactive micropowder such as SiO2 micropowder and α-Al2O3 micropowder was evaluated through oscillatory tests, sintered properties and microstructural analysis. Results show that the polymerization reaction between SiO2 micropowders enhanced the siloxane network and reinforced the bonding strength, furthermore, the addition of α-Al2O3 micropowder contributed to accelerating the formation of the siloxane network and hardening of the silica sol at lower temperatures and shorter time. Silica sol performed well as a binder agent for SiC castables with an addition content of 3 wt% SiO2 micropowder and 2 wt% α-Al2O3 micropowder, which showed high strength and good workability at room temperature. And Silica sol bonded SiC castable with the above micropowder contents possessed the best mechanical behavior after heat treatment due to combined binding of SiC whiskers and mullite.  相似文献   

15.
Colloidal silica bonded bauxite-andalusite based castables were prepared using homogenized bauxite and andalusite as aggregates, andalusite fines, corundum fines, ultrafine Al2O3 as matrixes and colloidal silica as binders. Effects of microsilica addition on the green strength, physical properties, hot strength and thermal shock resistance of castables were investigated. Moreover, phase composition and morphological evolution of specimens were characterized by XRD and SEM analysis. Green strength after demoulding, cold strength and hot strength as well as thermal shock resistance of the castables are enhanced with microsilica addition, which attribute to generating more chemical bond (–Si–O–Si–) after demoulding and heating at intermediate temperature (up to 1100 °C), and creating a stronger mullite bonding at higher temperature (1400 °C) compare to the specimens without microsilica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号