首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
等离子弧堆焊层的组织与性能的磁场控制   总被引:1,自引:0,他引:1       下载免费PDF全文
刘政军  陈宏  刘臣  刘铎 《焊接学报》2005,26(8):16-18,22
在对两种铁基合金(Fe5和Fe3)进行等离子弧堆焊过程中加入纵向直流磁场来控制堆焊层的硬质相形态及分布,并对两种堆焊层进行了硬度、磨损试验,显微组织及X射线衍射分析。并对两种粉末的堆焊层组织性能进行了研究。结果表明,施加磁场的堆焊层要比无磁场作用的堆焊层硬度高、耐磨性好;磁场电流为3A时的堆焊层性能最佳;合金堆焊层的显微组织α、γ固溶体被充分细化,并获得了理想的硬质相Cr7C3、CrB等。  相似文献   

2.
对铁基合金Fe5进行等离子弧堆焊时外加纵向磁场来控制堆焊层的硬质相的形态及分布,并对堆焊层进行了硬度、磨损试验,显微组织及X射线衍射分析,对堆焊层组织性能进行研究.结果表明,施加纵向磁场的堆焊层明显比无磁场作用的堆焊层硬度高、耐磨性好;磁场电流为3 A时的堆焊层性能最佳;合金堆焊层的显微组织α,γ固溶体被充分细化,并获得理想的硬质相Cr7C3,CrB等.  相似文献   

3.
将Fe5自熔合金采用等离子弧堆焊设备堆焊到低碳钢表面,在堆焊的过程中施加直流横向和直流纵向磁场,并调节磁场参数和堆焊工艺参数,对不同参数下堆焊试样进行硬度和磨损试验,采用显微电镜和扫描电镜对堆焊层显微组织进行分析,研究两种磁场状态下堆焊层组织、性能的差异性,并对其中的机理进行探究.结果表明,直流横向磁场和直流纵向磁场均可提高硬质相的形核率,改善堆焊层的组织性能;横向磁场作用下堆焊层中硬质相杂乱分析,而纵向磁场使堆焊层中的硬质相以规则的"六边形"出现,这使得横向磁场对提高堆焊层的硬度较明显,纵向磁场对提高堆焊层耐磨性效果明显.  相似文献   

4.
磁场频率对Fe5自熔合金性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
在低碳钢表面进行Fe5合金等离子弧堆焊时外加纵向磁场,对堆焊试样进行磨损和硬度试验,采用显微电镜和扫描电镜对堆焊层显微组织进行分析,研究磁场频率对堆焊层金属的硬度和耐磨性的影响规律.结果表明,外加纵向磁场通过电磁搅拌作用细化堆焊层金属的组织,并控制硬质相的形态及分布;堆焊层的硬度和耐磨性随磁场的频率变化而变化并存在最佳值,在适当的磁场频率作用下电磁搅拌达到最佳效果从而提高堆焊层金属的综合力学性能.  相似文献   

5.
在Fe5自熔堆焊合金的等离子弧堆焊过程中引入直流横向磁场,通过外加磁场对电弧和熔池的作用,改善堆焊层的组织,提高堆焊层的综合力学性能。对不同规范下的试件进行硬度、磨损试验和显微组织分析,研究磁场电流对堆焊层显微组织和力学性能的影响规律。结果表明,施加磁场的堆焊层要比无磁场作用的堆焊层硬度高、耐磨性好;当磁场电流为3A时,堆焊层性能取得最佳值,其耐磨性最好,硬度最高。  相似文献   

6.
采用碳弧堆焊方法对Cr-B-Ni-V系铁基合金堆焊时加入直流横向磁场,来细化堆焊层金属的组织,控制硬质相的形态及分布.通过对堆焊层进行硬度、磨损试验和显微组织的分析,得出了磁场强度对堆焊层金属的硬度和耐磨性的影响规律.结果表明,施加磁场比未施加磁场的堆焊层硬度高,耐磨性好;磁场参数与堆焊工艺参数相匹配时,堆焊层的性能达到最佳,即磁场电流3 A,堆焊电流180 A,堆焊速度12 cm/min时,堆焊层硬度最高,耐磨性最好,此时堆焊层中硬质相细小、分布均匀,且呈"六角形",方向一致.  相似文献   

7.
在铁基合金碳弧堆焊过程中加入直流横向磁场。通过外加磁场对电弧、熔池的相互作用,细化堆焊层金属的组织,控制硬质相的形态及分布,进而提高堆焊层的综合力学性能。通过对堆焊层进行硬度﹑磨损试验以及显微组织分析,研究堆焊速度、磁场强度对堆焊层金属的硬度和耐磨性的影响规律。结果表明,堆焊速度应与磁场电流配合,才能使堆焊层的性能得到充分改善;当堆焊速度为12cm/min,磁场电流为3A时,堆焊层的硬度最高,为HRC54.4;磨损量最小,为0.0335g。  相似文献   

8.
在外加纵向磁场作用下对低碳钢表面进行Fe5自熔合金等离子弧堆焊,对堆焊试样进行硬度和耐磨量试验,采用显微电镜和金相显微镜对堆焊层显微组织进行分析,系统地研究了磁场强度和磁场频率对堆焊层金属的硬度和耐磨性的影响规律.试验结果表明:外加纵向磁场通过电磁搅拌作用可细化堆焊层金属的组织,并控制硬质相的形态及分布;堆焊层的硬度和耐磨性随磁场的参数变化而变化并存在最佳值,在适当的磁场参数作用下电磁搅拌达到最佳效果,从而提高堆焊层金属的综合力学性能.  相似文献   

9.
金属基陶瓷复合等离子弧堆焊层组织与耐磨性能   总被引:1,自引:0,他引:1       下载免费PDF全文
等离子弧堆焊镍基钴基合金粉末时外加纵向磁场,对两种合金陶瓷复合堆 焊层进行硬度和磨损试验及显微组织分析.结果表明,施加磁场时的堆焊层性能比无 磁场作用的堆焊层性能高.钴基合金的最佳焊接电流和磁场电流分别为160 A和3 A. 此时堆焊层组织晶粒细化效果最明显;而镍基合金为140 A和1 A,此时堆焊层Cr7G3截 面的六角形陶瓷硬质相数量最多且均匀分布,说明Cr7G3硬质相的轴向平行方向一致, 因而硬度和耐磨性最好.随着磁场电流的继续增大,由于电磁阻尼占主导地位,这两种 合金的性能均下降.  相似文献   

10.
为了研究间歇交变磁场频率对堆焊层金属组织及性能影响,对低碳钢表面进行等离子弧堆焊时外加间歇交变纵向磁场,并利用光学金相、X射线衍射、显微硬度和湿砂橡胶轮磨损试验等方法系统分析了不同磁场频率对等离子弧堆焊试件的影响.结果表明:适当的交变磁场频率能有效地增加堆焊金属中硬质相的数量,控制硬质相的生长方向,提高堆焊层金属的硬度和耐磨性,从而进一步获得最佳的电磁搅拌效果.  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

17.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

18.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号