首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The spatial resolution of a stimulated emission depletion (STED) microscope is theoretically unlimited and practically determined by the signal‐to‐noise ratio. Typically, an increase of the STED beam's power leads to an improvement of the effective resolution. However, this improvement may vanish because an increased STED beam's power is often accompanied by an increased photobleaching, which worsen the effective resolution by reducing the signal strength. A way to lower the photobleaching in pulsed STED (P‐STED) implementations is to reduce the peak intensity lengthening the pulses duration (for a given average STED beam's power). This also leads to a reduction of the fluorophores quenching, thus a reduction of the effective resolution, but the time‐gated detection was proved to be successful in recovering these reductions. Here we demonstrated that a subnanosecond fiber laser beam (pulse width ∼600 ps) reduces the photobleaching with respect to a traditional stretched hundreds picosecond (∼200 ps) beam provided by a Ti:Sapphire laser, without any effective spatial resolution lost.  相似文献   

2.
A high-current picosecond (∼150 ps) electron accelerator with a beam energy of 50–100 keV is described. The use of a low-impedance vacuum diode at an amplitude of the arriving pulse of 300–400 kV made it possible to significantly increase the beam current (up to ∼15 kA) and the corresponding X-radiation intensity. One of the accelerator's applications in the X-ray therapy of malignant tumors. Some computational relations and results of measurements of the arriving and reflected voltage pulses near the diode are presented. The electron-accelerating voltage, beam current, vacuum-diode impedance, and other parameters are determined after the recovery procedure.  相似文献   

3.
On the basis of a РАДАН generator of high-voltage subnanosecond pulses, an experimental setup for recording the picosecond dynamics of excitation of optical radiation in semiconductor targets (plates) in strong electric fields has been developed. Semiconductor targets were placed between the electrodes to which voltage pulses with an amplitude of up to 150 kV were applied. These pulses were delayed by a coaxial transmission line by 20–30 ns. This technique allowed realization of triggering in advance the sweep of an electron-optical camera and studying of the dynamics of emission from targets with a resolution of 5 ps at a synchronization accuracy close to the rise time of an acting high-voltage pulse.  相似文献   

4.
We describe a method to visualize ultrafast laser-induced refractive index changes in transparent materials with a 310 fs impulse response and a submicrometer spatial resolution. The temporal profile of the laser excitation sequence can be arbitrarily set on the subpicosecond and picosecond time scales with a pulse shaping unit, allowing for complex laser excitation. Time-resolved phase contrast microscopy reveals the real part of the refractive index change and complementary time-resolved optical transmission microscopy measurements give access to the imaginary part of the refractive index in the irradiated region. A femtosecond laser source probes the complex refractive index changes from the excitation time up to 1 ns, and a frequency-doubled Nd:YAG laser emitting 1 ns duration pulses is employed for collecting data at longer time delays, when the evolution is slow. We demonstrate the performance of our setup by studying the energy relaxation in a fused silica sample after irradiation with a double pulse sequence. The excitation pulses are separated by 3 ps. Our results show two dimensional refractive index maps at different times from 200 fs to 100 μs after the laser excitation. On the subpicosecond time scale we have access to the spatial characteristics of the energy deposition into the sample. At longer times (800 ps), time-resolved phase contrast microscopy shows the appearance of a strong compression wave emitted from the excited region. On the microsecond time scale, we observe energy transfer outside the irradiated region.  相似文献   

5.
A technique for measuring the difference of times of arrival of laser beams at a spherically irradiated target in experiments on the 12-channel Iskra-5 facility is described. This technique is based on detection in test experiments of X rays from a specially designed target with a slit X-ray streak camera. The obtained information is used to perform time locking of laser pulses recorded at the output of the facility’s amplifying stages with a multichannel photochronographic system. The results of recording laser pulses at the output of the amplifying stages obtained in working experiments allow determination of the difference of times of arrival of laser beams at a target with an accuracy no worse than 50 ps.  相似文献   

6.
A multiframe, high-time resolution pump-probe diagnostic consisting of a consecutive train of ultrashort laser pulses (approximately ps) has been developed for use with a chirped pulse amplification (CPA) system. A system of high quality windows is used to create a series of 1054 nm picosecond-laser pulses which are injected into the CPA system before the pulse stretcher and amplifiers. By adding or removing windows in the pulse train forming optics, the number of pulses can be varied. By varying the distance and thickness of the respective optical elements, the time in between the pulses, i.e., the time in between frames, can be set. In our example application, the CPA pulse train is converted to 527 nm using a KDP crystal and focused into a preformed plasma and the reflected laser light due to stimulated Raman scattering is measured. Each pulse samples different plasma conditions as the plasma evolves in time, producing more data on each laser shot than with a single short pulse probe. This novel technique could potentially be implemented to obtain multiple high-time resolution measurements of the dynamics of physical processes over hundreds of picoseconds or even nanoseconds with picosecond resolution on a single shot.  相似文献   

7.
A method is described for the generation of software tunable patterns of nanosecond electrical pulses. The bipolar, high repetition rate (up to 250 MHz), fast rise time (<30 ps), square pulses are suitable for applications such as the excitation sequence in dynamic pump-probe experiments. Synchronization with the time structure of a synchrotron facility is possible as well as fine control of the relative delay in steps of 10 ps. The pulse generator described here is used to excite magnetic nanostructures with current pulses. Having an excitation system which can match the high repetition rate of a synchrotron allows for utilization of the full x-ray flux and is needed in experiments which require a large photon flux. The fast rise times allow for picosecond time resolution in pump-probe experiments. All pulse pattern parameters are configurable by software.  相似文献   

8.
Recent progress in high intensity ultrafast laser systems provides the opportunity to produce laser plasma x-ray sources exhibiting broad spectrum and high average x-ray flux that are well adapted to x-ray absorption measurements. In this paper, the development of a laser based x-ray absorption near edge structure (XANES) beamline exhibiting high repetition rate by using the Advanced Laser Light Source (ALLS) facility 100 Hz laser system (100 mJ, 35 fs at 800 nm) is presented. This system is based on a broadband tantalum solid target soft x-ray source and a grazing incidence grating spectrometer in the 1-5 nm wavelength range. To demonstrate the high potential of this laser based XANES technique in condensed matter physics, material science, or biology, measurements realized with several samples are presented: VO2 vanadium L edge, Si3N4 nitrogen K edge, and BPDA/PPD polyimide carbon K edge. The characteristics of this laser based beamline are discussed in terms of brightness, signal to noise ratio, and compared to conventional synchrotron broadband x-ray sources which allow achieving similar measurements. Apart from the very compact size and the relative low cost, the main advantages of such a laser based soft x-ray source are the picosecond pulse duration and the perfect synchronization between this x-ray probe and a laser pulse excitation which open the way to the realization of time resolved x-ray absorption measurements with picosecond range time resolution to study the dynamics of ultrafast processes and phase transition.  相似文献   

9.
An ultra-high-precision clock system for long time delay has been developed for picosecond time-resolved x-ray diffraction measurements using synchrotron radiation (SR) pulses and synchronized femtosecond laser pulses. The time delay control between pump laser pulse and the probe SR pulse was achieved by combining an in-phase quadrature modulator and a synchronous counter. This method allowed us to change the delay time by a nearly infinite amount while maintaining the precision of +/-8.40 ps. Time-resolved diffraction measurements using the delay control system were demonstrated for precise measurement of an acoustic velocity in a single crystal of gallium arsenide.  相似文献   

10.
A technique for registering the temporal structure of picosecond pulses of CO2 laser radiation with an energy of 1.5–4.5 μJ at a wavelength of 10.27 μm using two-stage parametric transformation of IR radiation frequency into visible light under pumping of nonlinear crystals by Nd:YAG-laser radiation in a Q-switched mode is described. A GaSe nonlinear crystal was used at the first stage of transformation (10.27 μm + 1.064 μm → 0.964 μm). Radiation was further transformed (1.064 μm + 0.960 μm → 0.506 μm) by using the same pumping in an α-HIO3 nonlinear crystal. For the first time, no additional optical elements were present between the stages of the frequency transformer in the proposed optical scheme. The transformed radiation was registered with a Hamamatsu Temporal Disperser C1587 streak camera in a region of the photocathode maximum spectral sensitivity of ~0.5 μm with a temporal resolution of up to 2 ps. The minimum recorded pulse duration of the CO2 laser was ~45 ps.  相似文献   

11.
Absolute bang time measurements with the gas Cherenkov detector (GCD) and gamma reaction history (GRH) diagnostic have been performed to high precision at the OMEGA laser facility at the University of Rochester with bang time values for the two diagnostics agreeing to within 5 ps on average. X-ray timing measurements of laser-target coupling were used to calibrate a facility-generated laser timing fiducial with rms spreads in the measured coupling times of 9 ps for both GCD and GRH. Increased fusion yields at the National Ignition Facility (NIF) will allow for improved measurement precision with the GRH easily exceeding NIF system design requirements.  相似文献   

12.
We show the viability of high-resolution two-photon fluorescence imaging of fixed and live cells by exciting the fluorophores with a train of near-infrared pulses with duration in the picosecond range. This is exemplified with a compact, diode-pumped Nd:YVO4 laser, emitting trains of 7-ps pulses at a wavelength of 1064 nm, with a repetition rate of 200 MHz at two separate outputs. Incoherent combination of the outputs enabled two-photon excitation with a repetition rate of 400 MHz. For a numerical aperture of 1.4 (oil), we used an average illumination power of up to 20–40 mW at the sample. The pulses were coupled into a beam scanning microscope, either directly or through a single mode glass fibre. Compared with standard femtosecond titanium–sapphire excitation conditions, our experiments were performed with a 2.5 or 5 times higher repetition rate, 30–70 times longer pulses and 10–35 times lower pulse peak intensity. The experiments indicate the possibility of significantly relaxing the temporal pulse width constraints for a series of applications.  相似文献   

13.
The construction of a pulsed electron gun for ultrafast reflection high-energy electron diffraction experiments at surfaces is reported. Special emphasis is placed on the characterization of the electron source: a photocathode, consisting of a 10 nm thin Au film deposited onto a sapphire substrate. Electron pulses are generated by the illumination of the film with ultraviolet laser pulses of femtosecond duration. The photoelectrons are emitted homogeneously across the photocathode with an energy distribution of 0.1 eV width. After leaving the Au film, the electrons are accelerated to kinetic energies of up to 15 keV. Focusing is accomplished by an electrostatic lens. The temporal resolution of the experiment is determined by the probing time of the electrons traveling across the surface which is about 30 ps. However, the duration of the electron pulses can be reduced to less than 6 ps.  相似文献   

14.
Three techniques for multiframe detection of X rays from laser targets of different types in experiments on the Iskra-5 facility are described. The frame duration is 100 ps, the number of frames is ten, and the spatial resolution is up to 10 μm. The developed techniques allow determination of the degree of uniformity of the emission from the end of a cylindrical target; the heating time of foils made from different materials; the collapse time of spherical glass targets filled with the DT gas; and the shape, size, and time of existence of a compressed core.  相似文献   

15.
A radiation foil bolometer intended for measuring radiation-energy fluxes and plasma flows in high-power pulsed plasma X-ray sources is studied. In the bolometer, the radiation or ion-flow energy is absorbed by a 13-μm-thick niobium foil preliminarily heated to T ≈ 1900 K by a quasi-constant current lasting 2 s. Radiation from the foil was fed through an 8-m-long light guide to a semiconductor photodetector. The sensitivity of the instrument obtained from the results of calibrations is 0.56 J/V cm2. The time resolution of this technique (∼2.5 μs) is determined by the foil heating time. In experiments with megaampere Z-pinches, the time resolution attained allows detection of the radiation energy independently of the energy of expanding plasma flows. In this case, the photoelectric effect from X-rays and the conductivity of expanding plasma do not affect the operation of the radiation bolometer. The working capacity of the bolometer was demonstrated at the Angara-5-1 facility in experiments with high-current Z-pinches with a radiation output energy of 50–100 kJ/pulse. The measurements performed have shown that the energy flux density of plasma expanding in the direction perpendicular to the pinch axis is at most 5% of the energy flux density of soft X-rays.  相似文献   

16.
Electron beam sampling of high speed digital devices requires a high time resolution. At the same time, long-range phase shifting is necessary because signals in these circuits may have very long period lengths. In this article, a new phase-shift method is described which allows sampling of low repetition rate signals without any degradation of the time resolution. This long range phase shift is realized by an additional set of blanking plates or blanking capacitor, which, acting as a gate, selects one of a large number of electron pulses produced by a first blanking capacitor. This technique also allows fast switching between different phase angles. The phase-shift method was evaluated experimentally using the picosecond e-beam tester which was developed here. The time resolution of this tester has been optimized recently to allow for stroboscopic testing with a 7 ps pulse width at 20 mV/√Hz noise voltage and 0.5 μm spot size. This allows for the measuring of rise times down to 14 ps with an error below 10%. Phase shifts of 100 ns were realized without any degradation of this time resolution. Propagation delays of 3.5 ps could be resolved. Signal rise times of 40 ps, corresponding to 0.04% of the total delay could be easily measured.  相似文献   

17.
The laser, detection system, and methods that enable femtosecond broadband stimulated Raman spectroscopy (FSRS) are presented in detail. FSRS is a unique tool for obtaining high time resolution (<100 fs) vibrational spectra with an instrument response limited frequency resolution of <10 cm(-1). A titanium:Sapphire-based laser system produces the three different pulses needed for FSRS: (1) A femtosecond visible actinic pump that initiates the photochemistry, (2) a narrow bandwidth picosecond Raman pump that provides the energy reservoir for amplification of the probe, and (3) a femtosecond continuum probe that is amplified at Raman resonances shifted from the Raman pump. The dependence of the stimulated Raman signal on experimental parameters is explored, demonstrating the expected exponential increase in Raman intensity with concentration, pathlength, and Raman pump power. Raman spectra collected under different electronic resonance conditions using highly fluorescent samples highlight the fluorescence rejection capabilities of FSRS. Data are also presented illustrating our ability: (i) To obtain spectra when there is a large transient absorption change by using a shifted excitation difference technique and (ii) to obtain high time resolution vibrational spectra of transient electronic states.  相似文献   

18.
Two modifications of the compact subnanosecond high-voltage bipolar pulse generator with an active unit based on a high-impedance charging line, forming line, and two uncontrolled nitrogen spark gaps without gas purging are studied. In both cases, the forming lines are charged with compression of the energies of incident pulses with a ∼160-kV amplitude, a ∼4-ns duration, and a ∼1.5-ns leading edge. The difference of operation modes of the circuits and their efficiency are specified by a point of connecting the load. In conditions of nanosecond prebreakdown overvoltage at a 100-Hz repetition rate, the spark gaps were energized with a relative scatter of ±(100–170) ps, thus specifying the stability of the shape of output bipolar pulses with a voltage difference up to 250 kV.  相似文献   

19.
The results of the excitation of СdS semiconductor targets by a subnanosecond electron beam (EB) with an electron energy of 60–230 keV are presented. The maximum intensity of laser radiation from targets for a 1-mm EB diameter exceeded 107 W/cm2 at an efficiency of ~10%. Lasing was initiated at the leading edge of the EB current; laser radiation then reproduced the shape of the excitation pulse. At low excitation levels, a single-mode lasing regime with the wavelength λ = 522 nm was observed. The maximum power of laser radiation (10 MW) was achieved on a multielement CdS semiconductor target. The duration of laser pulses changed in the range of 100–500 ps.  相似文献   

20.
The results are presented of the absolute calibration of X-ray optical elements (diffraction gratings and Sc/Si multilayers) and detectors (an УΦ-4 photographic film and a vacuum X-ray diode) used in diagnostic devices to study generation of X-ray laser radiation in an argon plasma of a capillary discharge (λ = 46.9 nm). The measurements have been performed at the soft X-ray and vacuum UV station of the VEPP-4 storage ring at the Siberian International Center of Synchrotron Radiation. An absolutely calibrated AXUV 100G photodiode has been used as a reference detector. The relative error of calibration is 10%. The measured reflectances of the multilayer mirrors and gratings are in good agreement (within the limits of errors) with the results of their calibration at the RKK-1-100 X-ray calibration facility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号