首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel series of Ce~(3+)-doped Yb_3 Al_(5-x)Ga_xO_(12)(x = 0, 1,2, 3,4, 5) powders of ytterbium aluminum gallium garnets were synthesized by high temperature solid-state reaction in a carbon reducing atmosphere. The ytterbium aluminum garnets were characterized by X-ray powder diffraction, UV-Vis diffuse reflectance spectra, photoluminescence spectra and decay curves. Moreover, the substitution effect for the Al~(3+) sites with Ga~(3+) in 0.5 at%Ce:Yb_3 Al_(5-x)Ga_xO_(12)(x = 0,1, 2, 3, 4, 5) garnets were discussed. With the increase of Ga~(3+) ion concentration, the visible absorption peaks within 400-450 nm have blue shift phenomenon,while the absorption peaks in the range of 330-350 nm and the absorption band edge red shifts.Furthermore, the short decay times are very short with less than 10 ns due to the Yb~(3+) + Ce~(3+)→ Yb~(2+) + Ce~(4+) electron transfer reaction.  相似文献   

2.
In this study, ultrafine Ce0.8La0.2–x Y x O1.9(for x=0, 0.05, 0.10, 0.15, 0.20) powders were successfully prepared by the sol-gel method.The samples were characterized by fourier transform infrared(FTIR), thermogravimetric and differential scanning calorimetry(TG-DSC), X-ray diffraction(XRD), scanning electron microscopy(SEM), AC impedance and thermal expansion measurements.Experimental results indicated that highly phase-pure cubic fluorite electrolyte Ce0.8La0.2–x Y x O1.9 powders were obtained after calcining at 600 °C.The as-synthesized powders exhibited high sintering activity, the Ce0.8La0.2–x Y x O1.9 series electrolytes which have higher relative densities over 96% could be obtained after sintered at 1400 °C for 4 h.Ce0.8La0.15Y0.05O1.9 electrolyte sintered at 1400 °C for 4 h exhibited higher oxide ionic conductivity(σ800 oC=0.057 S/cm), lower electrical activation energy(E a=0.87 e V) and moderate thermal expansion coefficient(TEC=15.5×10-6 K-1, temperature range 25–800 °C).  相似文献   

3.
First-principles calculations based on density functional theory were performed to investigate the cohesive energies, elastic modulus, Debye temperatures, thermal conductivities and density of states of La2−xYbxZr2O7, La2Zr2−xCexO7 and La2−xYbxZr2−xCexO7 (x = 0.00, 0.25, 0.50, 0.75, 1.00) ceramics. The results show that doping Yb3+ or Ce4+ into La2Zr2O7 reduces its elastic modulus, thermal conductivity and Debye temperature. Compared with La2−xYbxZr2O7 (x ≠ 0.00), La2Zr2−xCexO7 compounds have better ductility and lower Debye temperature. The Debye temperature values of La2Zr2−xCexO7 (x ≠ 0.00) compounds are in the range of 485.0–511.5 K. Among all components, the fluorite-type La2−xYbxZr2−xCexO7 (x = 0.75, 1.00) compounds exhibit better mechanical and thermophysical properties, and their thermal conductivity values are only 1.213–1.246 W/(m∙K) (1073 K), which are 14.5%–16.7% lower than that of the pure La2Zr2O7. Thus, our findings open an entirely new avenue for TBCs.  相似文献   

4.
Yttrium aluminium garnet(Y_3 Al_5 O_(12):YAG) singly doped with Dy3+ at different concentrations was prepared by solid state reactions using repeated heating cycles over the temperature range of 1300-1600 ℃. X-ray powder diffraction analysis confirms the presence of a well-crystallized YAG perovskite phase with cubic structure(by Rietveld refinement). The rare earth dopant is successfully integrated into the YAG host lattice without any major changes in the original structure. The temperature dependence,up to 250 ℃, of the conductivity, dielectric constant, dielectric loss, and loss tangent, at various frequencies of up to 5.0 MHz for undoped and doped crystals is compared to understand the electrical and structural characteristics. The experimental results reveal that Dy3+ dopants in YAG crystal significantly influence the conductivity, dielectric constant, and lossy mechanisms, which is probably due to the 3 d-AI ions and 4 f-Dy ions incorporated at different positions of both tetrahedral and octahedral symmetries in YAG:xDy3+ ceramics.  相似文献   

5.
(Y_(0.87)La_(0.1)Zr_(0.03))_2O_3 nanopowders doped with various concentrations of Tm~(3+) and Ho~(3+) were prepared by the citrate method. The standard cubic Y_2O_3 phase can be matched in the Tm~(3+)/Ho~(3+) co-doped(Y_(0.87)La_(0.1)Zr_(0.03))_2 O_3 nanopowders. The nanopowders exhibit average particle sizes of 40,60, 80 and 100 nm after calcinated at 900,1000,1100 and 1200℃,respectively. The energy transfer from Tm~(3+) to Ho~(3+) and the optimum fluorescence emission around 2 μm were investigated. Results indicate that the emission bands at around 1.86 and 1.95 μm correspond to ~3 F_4→~3 H_6 transition of Tm~(3+) and ~5 I_7→~5 I_8 transition of Ho~(3+), respectively.Better spectral properties were achieved in Tm~(3+)/Ho~(3+) co-doped(Y_(0.87)La_(0.1)Zr_(0.03))_2O_3 nanopowders with the average size of 100 nm obtained at the conditions of the treatment of precursors calcinated at 1200 ℃ for 2 h doped with 1.5 mol% Tm~(3+) and 1 mol% Ho~(3+).  相似文献   

6.
A solid state reaction method was used to prepare the perovskite-structured compounds BaZrl-xYxO3-a (x=0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3). The X-ray diffraction (XRD) pattern indicated that the target perovsldte phases were obtained. With increasing Y con- centration the unit cell parameters of BaZrl-xYxO3-a samples were expanded, and Y doping became more difficult. However, high synthesis temperature is helpful to promote Y doping. The SEM results showed that the samples exhibited poor sinterability with in- creasing Y-doping content. Thermal gravimetric (TG) curves analysis showed the more mass decreasing of BaZrl-xYxO3-a (0≤x≤0.3) samples at high temperature with more Y doping and more proton introducing. The electrochemical impedance spectra (EIS) of specimens showed that conductivities of BaZrl_xYxO3(0≤x≤0.3) increased with increasing temperature from 300 to 900 ℃ in wet air. At 900 ℃, the conductivity of BaZrl-xYxO3-a (0≤x≤0.3) first increased with increasing doped amount of Y, and reached the high- est value of 1.07x 104 S/cm when x was 0.2, then decreased gradually with further increasing Y content. At 600 ℃, BaZr0.75Y0.2503-a displayed the highest conductivity, while the conductivity of BaZro.rYo.303-a was the highest at 300 ℃. The results indicated that there should be an optimum Y doping concentration yielding the highest conductivity at a constant temperature, and the optimum Y doping concentration should increase in the humidity atmosphere as the temperature decreases. So increasing the Y-doping concen- tration is helpful to improve the conductivities of BaZrl-xYxO3-a materials at low temperature.  相似文献   

7.
In the current article, we studied the effect of yttrium [Y3+] ions’ substitution on the structure and electric behavior of barium zirconate titanate (BZT) ceramics with a general formula [Ba1?x Y2x/3](Zr0.25Ti0.75)O3 (BYZT) with [x = 0, 0.025, and 0.05] which were prepared by the solid-state reaction method. X-ray diffraction patterns indicate that these ceramics have a single phase with a perovskite-type cubic structure. Rietveld refinement data confirmed [BaO12], [ZrO6], [TiO6], and [YO6] clusters in the cubic lattice. The Y3+ ions’ effects on the electric conductivity behavior of BZT ceramics as a function of temperature and frequency are described, which are based on impedance spectroscopy analyses. The complex impedance plots display a double semicircle which highlights the influences of grain and grain boundary on the ceramics. Impedance analyses showed that the resistance decreased with the increasing temperature and resulted in a negative temperature coefficient of the resistance property in all compositions. Modulus plots represent a non-Debye-type dielectric relaxation which is related to the grain and grain boundary as well as temperature-dependent electric relaxation phenomenon and an enhancement in the mobility barrier by Y3+ ions. Moreover, the electric conductivity increases with the replacement of Ba2+ by Y3+ ions may be due to the rise in oxygen vacancies.  相似文献   

8.
Dielectric ceramics of M(x) Al6(1–x) Si2 O13 doped mullite were synthesized via co-precipitation technique. The X-ray diffraction profiles revealed that these nanoparticles were crystallized well and the volume of mullite unit cell was increased as a function of the ionic radius of dopant ion. TEM images showed regular orthorhombic crystal morphology for the pure mullite sample. Meanwhile, the doped samples exhibited slightly distorted crystal morphology of larger particle sizes. DSC thermograms evinced that the exothermic peak temperature of mullite was shifted to the lower value with M3+ion insertion. The photoluminescence spectra were studied for mullite samples, and it was found that the intensity of the emission spectra was affected by the M3+ion type. It was found that, Y3+doped mullite achieved the minimum dielectric loss value of 0.01 in the radio wave frequency region(1 MHz). Meanwhile, Gd3+ doped mullite achieved the minimum dielectric loss value of 0.09 in the microwave frequency region(1 GHz).  相似文献   

9.
BaO-Y2O3-TiO2 microwave dielectric ceramics with the rich area of TiO2 were fabricated by a solid-state reaction method using BaCO3, Y2O3, TiO2 powders as starting materials. The sintering characteristics, phase composition, micro-structures and microwave dielectric properties of BaO-Y2O3-TiO2 microwave dielectric ceramics with different k values sintered at different temperatures were investigated. The results showed that the sintering temperature of BaO-Y2O3-TiO2 microwave dielectric ceramics was lower (about 1240 °C), and the sintered ceramics with the major phase of Y2Ti2O7 had excellent dielectric properties. When k = 4, ɛr and tanδ were about 78.3 and 3 × 10−3 respectively. When k=5, ɛr and tanδ were about 53 and 9 × 10−4 respectively.  相似文献   

10.
La0.7-xSmx+0.02Ca0.3CrO3-δ(0≤x≤0.4) powders with A-site excessive perovskite structure were synthesized by auto-ignition process and characterized. X-ray diffraction (XRD) patterns of samples after sintering at 1400℃ for 4 h were indexed as tetragonal structure. The relative densities were all above 96% although decreased slightly with the increasing content of samarium, indicating that the excessive A-site element was helpful to enhance their sinterability. Conductivities of the specimens in air increased with increasing content of samar-ium. The conductivity of La0.6Sm0.12Ca0.3CrO3-δ was 33.6 S/cm in air at 700 ℃ which was about 1.7 times as high as that of La0.7Ca0.3CrO3-δ (20.1 S/cm). Average thermal expansion coefficients (TECS) of the specimens increased from 11.06×10-6 to 12.72×10-6 K-1 when x in-creased from 0 to 0.4, and they were close to that of Y doped ZrO2 (YSZ). La0.7-xSmx+0.02Ca0.3CrO<3-δ>(0.1≤x≤0.3) were good choices for in-termediate temperature solid oxide fuel cells (IT-SOFCs) interconnect materials.  相似文献   

11.
YAG:Ce3+(Yttrium aluminum garnet) fluorescence powders were successfully prepared by co-precipitation method using aluminum nitrate, yttrium nitrate, cerous nitrate as the starting materials and ammonium carbonate as precipitant. The products were characterized by X-ray powder diffraction, luminescence spectrometer, transmission electron microscope (TEM). The XRD results showed that the obtained YAG:Ce3+ fluorescence powders had the crystalline structures of YAG at calcinations temperature of 900 °C and the TEM results showed that the grain diameters were about 100 nm. The YAG:Ce3+ fluorescence powders, synthesized by co-precipitation method, had the best luminescence property when the Ce doping amount was x=0.06 in the molecular formula of Y3-xCexAl5O12, the calcinations time was 2 h and the calcinations temperature was 1000 °C.  相似文献   

12.
With narrow red photoluminescence (PL) bands, tetravalent Mn4+ doped phosphors show promising prospect in commercial application to effectively expand color gamut of phosphor converted LED displays. Here, we report a type of Sr2–zMg1+yYzAl22–xO36:xMn4+ phosphors with regular cage-like micro-spherical morphologies. The micron size spherical precursors were synthesized with a propylene oxide (PO) driven fast sol–gel method. The cage -like spherical morphology is beneficial to efficiently trapping much incident light to enhance the PL of the phosphors. Being calcined at 1300 °C, Sr2MgAl21.978O36:0.022Mn4+ only exhibits the internal quantum efficiency (IQE) of 24.91%. With the Mg2+-Mn4+ codoping and Y3+/Sr2+ substituting strategies, to fulfill charge balance and produce John-Teller distortion, IQE of Sr2–zMg1+yYzAl22–xO36:xMn4+ can be further improved up to 36.45%. The CIE color coordinates of Sr2–zMg1+yYzAl22–xO36:xMn4+ under near ultraviolet excitation can be stably fixed to (0.723, 0.227) at deep red region. It thus finds a potential application as pc-LED display with much broader color gamut than that of the NTSC standard. Therefore, Sr2–zMg1+yYzAl22–xO36:xMn4+ micron size spheres can be employed as promising red phosphors for high performance LED displays.  相似文献   

13.
Herein, we demonstrate the synthesis of W and Ba co-doped La_2Mo_2O_9(LBMWO) nanocrystalline powder by a sol-gel process. In all the compositions have general formulae La_(1.9)Ba_(0.1)Mo_(2-x)W_xO_(8.95)(x = 0-0.40). The crystal structure, microstructure and conductivity of LBMWO were characterized by X-ray diffraction, scanning electron microscopy and electrical impedance spectroscopy. In addition, the thermal and decomposition properties of the LBMWO gel were analyzed by differential scanning calorimetry-thermogravimetric. The results reveal that all LBMWO powders calcined at 700 ℃ have a cubic structure;the average crystallite size is about 48 nm. The unit cell parameter of LBMWO powders increases with increase in W content. The as-synthesized nanocrystalline LBMWO samples exhibit excellent sinterability and a relatively lower sintering temperature of 900 ℃. A high relative density of -96% is achieved after sintering at 900 ℃ which is in good agreeme nt with the re sults of the SEM. Moreover, W and Ba codoping suppresses the phase transition and effectively stabilizes the β-phase at low temperature. At the same time,La_(1.9)Ba_(0.1)Mo_(1.85)W_(0.15)O_(8.95) exhibits high ionic conductivity, 3.07 x 10~(-2) S/cm at 800 ℃. It is therefore concluded that co-doping can improve the properties of La_2MO_2O_9 electrolytes.  相似文献   

14.
We documented(ⅰ) the decolorization of wastewater in visible light,which contains methyl orange,crystal violet and indigo carmine dyes,using La0.7Sr0.3Mn1-xFexO3(x=0.0,0.05,0.1 and 0.5) manganites and(ⅱ) efficient separation of photocatalysts from water using magnetic field.These ceramic photocatalysts were sintered at 1050℃ for 12 h.Ceramics were characterized by X-ray diffraction(XRD),soft X-ray absorption spectroscopy(SXAS),Fourier transf...  相似文献   

15.
Novel Nd3+/Yb3+ co-doped sodium calcium silicate glasses were prepared by melting quenching method:Spectroscopic study was carried out as a function of doping content by fixing sensitizer(Nd3+) concentration to 0.2 mol% and adjusting activator(Yb3+) from 0 to 1.0 mol%.The energy transfer(ET)mechanisms between Nd3+and Yb3+ are discussed based on their energy levels and excitation powerdependence emission intensity.Results show that...  相似文献   

16.
Erbium and ytterbium doped barium titanate nanopowders were prepared using the hydrothermal method. A barium titanate structure doped with rare earth ions manifested new characteristics and improved the field of application of optical devices such as trichromatic tubes, LCD displays, lamps, and infrared lasers. In this work, BaTiO3:Er3+ and BaTiO3:Yb3+ were prepared using barium chloride [BaCl2], titanium butoxide [C16H36O4Ti], erbium chloride [ErCl3] and ytterbium chloride [YbCl3] as precursors. Anhydrous methanol was employed as a solvent. Metallic potassium was used to promote solubility in the system and increase the pH to 13. This method yielded the formation of a predominantly cubic structure in both Er3+ and Yb3+ doped BaTiO3 powders. Characteristic bondings of BaTiO3 were observed with FT-IR spectroscopy. The predominantly cubic structure was confirmed by X-ray diffraction and micro-Raman analyses. The particle size(~30 nm) was estimated using the Scherrer equation and X-ray diffraction data. The results were presented and discussed.  相似文献   

17.
Rare earth Er3+ doped (Sm1–xErx)2Zr2O7 (x = 0.1, 0.2, and 0.3) ceramic samples were synthesized using a solid state reaction method. The microstructure and thermal properties of these ceramics were investigated to evaluate their potential as thermal barrier coating materials. The results show that ceramics are compact with regular-shaped grains of 1–5 μm size. (Sm1–xErx)2Zr2O7 has a pyrochlore structure mainly determined by ionic radius ratio, but the ordering degree decreases with increase of the Er2O3 content. There is no phase transformation from 1000 to 1200 °C, and the (Sm1–xErx)2Zr2O7 ceramics exhibit excellent phase stability during thermal treatment at 1200 °C for 100 h and 1400 °C for 50 h. The thermal conductivities of dense (Sm1–xErx)2Zr2O7 ceramics range from 1.52 to 1.59 W/(m·K), which is lower than that of Sm2Zr2O7, and decrease as the Er2O3 content increases. Besides, the thermal expansion coefficient of (Sm1–xErx)2Zr2O7 is higher than that of Sm2Zr2O7.  相似文献   

18.
The fabrication peculiarities of low-agglomerated yttria(Y2O3) nanopowders via thermal decomposition of sulfate-doped precursor with transient morphology were studied.It was determined that Y2(OH)5(NO3)x(CO2)y(SO4)z·nH2O(n=1–2) crystalline precursor underwent fragmentation and decomposition into isolated quasi-spherical Y2O3 particles upon calcination.Effect was connected with minimizing the free energy of the plate-like crystallites via reducing the contact surface until to the moment of spheroidization and attainment of isolation that occurred at Т=1100 °С.Residual sulfate ions slowed down the surface diffusion during heat treatment thus retaining quasy-spherical morphology and low aggregation degree of Y2O3 nanopowders.Sulfate-doped yttria nanopowders with medium particle size of 53±13 nm possessed improved sinterability in comparison with undoped ones arising from finer particle size,narrower particle distribution and lower agglomeration degree.  相似文献   

19.
The effect of Fe doping on the electrical properties of lanthanum silicates was investigated. The apatite-type lanthanum silicates La10Si6-xFexO27-x/2 (x=0.2, 0.4, 0.6, 0.8, 1.0) were synthesized via sol-gel process. The unit cell volume increased with Fe doping because the ionic radius of Fe3+ ion is larger than that of Si4+ ion. The conductivities of La10Si6-xFexO27-x/2first increased and then decreased with the in-creasing of Fe content. The increase of the conductivity might be attributed to the distortion of the cell lattice, which assisted the migration of the interstitial oxygen ions. The decrease of the conductivity might be caused by the lower concentration of interstitial oxygen ions. The op-timum Fe doping content in lanthanum silicates was 0.6. La10Si5.4Fe0.6O26.7 exhibited the highest ionic conductivity of 2.712×10-2 S/cm at 800 ℃. The dependence of conductivity on oxygen partial pressure p(O2) suggested that the conductivity of La10Si6-xFexO27-x/2 was mainly con-tributed by ionic conductivity.  相似文献   

20.
A novel orange-red emitting Ba3Y4O9:Sm3+ phosphors were prepared by a high temperature solid-state reaction in air. X-ray diffraction (XRD), photoluminescence spectra, fluorescence decay and temperature-dependent emission spectra were utilized to characterize the structure and luminescence properties. The results show that the excitation spectrum includes a series of linear peaks at 350, 367, 382, 410, 424, 445, 470 and 495 nm, respectively. Under 410 nm excitation, the emission peaks were located at 574 nm (4G5/26H5/2), 608 nm (4G5/26H7/2), 659 nm (4G5/26H9/2) and 722 nm (4G5/26H11/2), respectively. The concentration quenching occurs when x equals 0.08 for Ba3Y4–xO9:xSm3+ phosphor and its mechanism is ascribed to the dipole–dipole interaction. The chromaticity coordinates of Ba3Y3.92O9:0.08Sm3+ phosphor are in the orange-red region. The temperature-dependent study shows that this phosphor has excellent luminescence thermal-stability. And the luminescence intensity of Ba3Y3.92O9:0.08Sm3+ phosphor at 473 K only declines by about 25.75% of its initial intensity. The experimental data indicate that Ba3Y4O9:Sm3+ phosphor may be promising as an orange-red emitting phosphor for white light emitting diodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号