首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The microstructure and tensile properties of the as-cast and solution treatment Mg-4.5Zn-1Y-xNd-0.5Zr (x=0, 1 wt.%, 2 wt.%, 3 wt.%) alloys were investigated. The results showed that the microstructure of Mg-4.5Zn-1Y-0.5Zr alloy consisted of α-Mg, Zn-Zr, W (Mg3Y2Zn3) and I (Mg3YZn6) phases. With the addition of Nd, I-phase disappeared and Mg3Y2Zn3 phase changed into Mg3(Nd,Y)2Zn3 phase. When the content of Nd reached 3 wt.%, T phase, i.e., ternary Mg-Zn-Nd phase, formed. In addition, with the increase of Nd content in the alloys, the secondary dendritic arm spacing decreased, while the amount of intermetallic phases increased. For as-cast Mg-4.5Zn-1Y-xNd-0.5Zr alloys, after solution treatment, microsegregation was eliminated and the shape of eutectic structure of α-Mg+W transformed from lamellar into spherical. The tensile strength and elongation of Mg-4.5Zn-1Y- 3Nd-0.5Zr alloy were increased from 219.2 MPa and 11.0% to 247.5 MPa and 20.0%, respectively.  相似文献   

2.
The effects of combined addition of 0.6 wt.% Nd and 0.4 wt.% Y on the microstructure and mechanical properties of Mg-7Zn-3Al alloy were investigated.The results indicated that the Nd and Y addition led to obvious dendrite coarsening.However,it could modify the morphology and distribution of-Mg 32(Al,Zn) 49 intermetallics.Moreover,Al 2 REZn 2 phase could be introduced into the alloy with the Nd and Y addition.With the effective second-phase strengthening,the ultimate tensile strength and elongation in as-cast state can be improved by the Nd and Y addition.After ageing treatment,the alloy with the Nd and Y addition exhibited better precipitation strengthening effects by forming finer MgZn 2 and Mg 32(Al,Zn) 49 precipitates into the-Mg matrix.As a result,the yield and ultimate strength of Mg-7Zn3Al-0.6Nd-0.4Y alloy could be increased to 182 and 300 MPa by peak-ageing treatment.  相似文献   

3.
The microstructure and mechanical properties of aged Mg-10Y-2.5Sm alloy were investigated.The results showed that the microstructure of the alloy consisted of α-Mg matrix and Mg24Y5 phase,and fine Mg24Y5 particles distributed in α-Mg matrix uniformly and dispersedly.Sm enhanced α-Mg matrix and Mg24Y5 phase by solid solution effect.At 200-300 oC,the ultimate tensile strengths were more than 200 MPa and the elongations were about 3%.Compared with those at room temperature,the mechanical properties had no obvious changes.  相似文献   

4.
Effects of Nd on microstructure and mechanical properties of as-cast Mg-8Li-3Al alloy were investigated by OM,X-ray diffraction(XRD),EPMA,scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS).The results showed that the dendrites sizes of α phase were decreased by the Nd addition.When the amount of addition Nd was 1.6 wt.%,the alloy with the smallest α phase was obtained.The refining mechanism mainly owed to the increasing constitutional supercooling at the solidification front.Furthermore,the compound Al 2 Nd generated by the reaction of Al and Nd,which distributed at the phase boundary and inside β phase,could also restrain the growth of α phase.Nd could improve the tensile strength and elongation of Mg-8Li-3Al alloy,however,excessive Al 2 Nd might also become crack source and decrease the elongation.  相似文献   

5.
The effects of Y on the microstructure and mechanical properties of ZL107 alloy were investigated using optical microscope, scanning electron microscope (SEM), Brinell hardometer, and MTS 810-22M tensile testing machine in this paper. The results showed that after Y was added to ZL107 alloy, the size of α-Al dendritie reduced, the acicular eutectic Si became short rod-shaped or granular, and the number and size of the blowholes obviously reduced. The mechanical properties of ZL107 alloy firstly increased and then decreased with Y content increasing. When Y content was 0.1 wt.%, the tensile strength and hardness of the alloy were maximum.  相似文献   

6.
The mechanical properties of hypereutectic Al-Si alloys are mainly determined by size and morphology of the primary silicon phase.So,optical microscopy(OM) and X-ray diffraction(XRD) were adopted to study affection of Nd on primary silicon of hypereutectic Al-15%Si alloy in this paper.The results of OM showed that pure Nd could effectively refine primary silicon of hypereutectic Al-15%Si alloy.When Nd addition was 0.3%,the average size of primary silicon reduced from 20-40 μm of initial sample to 10-20 μm of modified sample.XRD pattern showed that no new phase was formed after Nd modification.The results of mechanical properties test showed that whole properties of modified samples were significantly improved.Tensile strength increased about 32.6% from 147 MPa to 195 MPa.Elongation was increased about 160% from 1.0% to 2.6%.The improvement of mechanical properties should attribute to primary silicon refinement after modification.  相似文献   

7.
The microstructure evolution and mechanical properties of Mg-15Gd-3Y alloy were investigated in the as-cast and heat treated conditions.The microstructure evolution from as-cast to cast-T4 states involved α-Mg solid solution+Mg5(Gd,Y) phase→α-Mg supersatu-rated solid solution+rare earths compound Mg3(Gd1.26,Y0.74)→α-Mg supersaturated solid solution+rare earths compound Mg3(Gd0.745,Y1.255).It showed that 480 oC/4 h was the optimal solution treatment parameter.If the solution temperature was high or the holding time was long,such as 520 oC/16 h,an overheating phenomenon would be induced,which had a detrimental effect on the mechanical properties.When age-ing at 225 and 200 oC,the alloy would exhibit a significant age-hardening response and great long-time-age-hardening potential,respectively.The best mechanical properties were obtained at the parameters of 480 oC/4 h+225 oC/16 h,with the UTS of 257.0 MPa and elongation of 3.8%.  相似文献   

8.
TheresearchshowedthatmostofNiAl basedalloysexhibitedratherlowroomtemper atureductilityexceptNi 2 0Al 3 0Fe(% ,un lessotherwisenoted ,allcompositionsareinatomicpercent)andsinglecrystallineNiAlal loyedwithminorFe ,Mo ,Ga[1,2 ] .Inrecentyears ,itobtainedacombinationofg…  相似文献   

9.
Age hardening,microstructure and mechanical properties of Mg-xY-1.5MM-0.4Zr (x=0,2,4,6 wt.%) alloys (MM represents Ce-based misch-metal) were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that the formed precipitates being responsible for age hardening changed from fine hexagonal-shaped equilibrium Mg12MM phase to metastable β’ phase with bco crystal structure when Y was added into Mg-1.5MM-0.4Zr alloy,and the volume fraction of precipitate phases also increased. With the increase of Y content in Mg-Y-1.5MM-0.4Zr alloys,it was found that the age hardening was enhanced,the grain sizes became finer and the tensile strength was improved. The cubic-shaped β-Mg24Y5 precipitate phases were observed at grain boundaries in Mg-6Y-1.5MM-0.4Zr alloy. It was suggested that the distribution of prismatic shaped β’ phases and cubic shaped β-Mg24Y5 precipitate phases in Mg matrix might account for the remarkable enhancement of tensile strength of Mg-Y-MM-Zr alloy. It was shown that the Mg-6Y-1.5MM-0.4Zr alloy was with maximum tensile strength at aged-peak hardness,UTS of 280 MPa at room temperature and 223 MPa at 250 oC,respectively.  相似文献   

10.
用粉末冶金技术制备Ni-Fe-Al合金,将Ni、Fe、Al的元素粉与预合金粉等量混合后在500MPa下压制成形,于1280℃的温度烧结后进行热处理,对合金烧结态和淬火态进行密度、力学性能检测及X射线衍射分析、断口形貌及微观组织观察。结果表明:NiFe19Al25合金烧结态为(β+γ)双相组织,合金的密度达6.54g/cm3(相对密度为94.0%),抗拉强度达到771MPa,形变量为5.3%;合金淬火态处于(β′+γ)双相区,具有马氏体结构的NiFe19Al25合金在应力作用下呈现出线性超弹性,抗拉强度达到761MPa,形变量高达8.1%,最高形变恢复量超过4%。  相似文献   

11.
The effects of precipitates on grain size and mechanical properties of as-cast AZ3 1-x%Nd magnesium alloy were investi- gated, and the affecting mechanism was also discussed. The results indicated that Al2Nd phase, AlllNd3 phase and a few AI-Mn-Nd-Fe phase were furmed when adding 0.38 wt.%-1.46 wt.% Nd into AZ31 melt, coarse AI2Nd transformed into Al11Nd3 gradually with the increasing of Nd content. Due to structure and size transformation and content increasing of AI-Nd phase, the grain size of AZ31-x% Nd alloy increased firstly, and then decreased with the increment of Nd content. After reaching a minimum value, once again it rose up, provided that Nd content was further increased. The tensile property reached its optimal value when the adding amount of Nd content was 1.05 wl.%, however, adding excessive amount of Nd deteriorated both ultimate strength and elongation ofAZ31 alloy.  相似文献   

12.
For thixoforming to be possible,the microstructure of the starting material must be non-dendritic,which can be obtained by the strain induced melt activation(SIMA)route.Based on the SIMA route,as-cast AZ91D alloy with the addition of yttrium was deformed by cyclic closed-die forging(CCDF).Microstructure evolution of CCDF formed AZ91D-RE alloy during partial remelting were investigated.Furthermore,the mechanical properties of thixoformed AZ91D-RE magnesium alloy components were also studied.The results showed that prolonged holding time resulted in grain coarsening and the improvement in degree of spheroidization.The coarsening behaviour of solid grains in the semi-solid state obeyed Ostwald ripening mechanism.The coarsening rate constant of CCDF formed AZ91D-RE during partial remelting was 324 um3/s at 550℃.The value of yield strength,ultimate tensile strength and elongation to fracture of four-pass CCDF formed AZ91D-RE magnesium alloy were 214.9,290.5 MPa and 14%,respectively.Then the four-pass CCDF formed alloys were used for thixoforming.After holding at 550℃ for 5 min,the values of yield strength,ultimate tensile strength and elongation to fracture of thixoformed component were 189.6 MPa,274.6 MPa and 12%,respectively.However,prolonged holding time led to remarkable decrease in mechanical properties of thixoformed components.  相似文献   

13.
由于GH4065A合金的强化相γ′相的体积分数为43.0%,显微组织演化规律不同于传统的变形高温合金与粉末高温合金。系统分析了GH4065A合金的锻态组织特点与演化机制,发现其显微组织是一种不完全的动态再结晶(DRX)组织,动态再结晶晶粒被大尺寸γ′相限制长大,同时这些γ′相因晶界短路扩散而粗化,而未动态再结晶(unDRX)晶粒内弥散分布的小尺寸γ′相阻碍位错运动,进而形成大量由位错胞壁构成的亚结构。基于合金的锻态组织特点,可以通过固溶处理,利用动态回复(DRV)机制基本消除残留的未动态再结晶组织。根据GH4065A合金γ′相的固溶温度,可将热处理制度分为亚固溶处理与过固溶处理2种,亚固溶处理后的晶粒度为8.0级,过固溶处理的晶粒度为4.0级。经亚固溶处理后,GH4065A合金涡轮盘锻件的力学性能达到了第2代粉末涡轮盘的水平。  相似文献   

14.
The effects of Nd on the microstructure and mechanical properties of Mg-Sb3 alloy were studied with the 0~0.15% addition content. The addition of Nd makes the grain of Mg-Sb3 alloy obviously refined, where the grain size decreases from 100~200 μm to 0.2~10 μm. And the typical dendrite characteristic turns into the equiaxed grain microstructure with the addition of 0.05%~0.1% Nd. The reason for grain refinement is from the supercooling theory. The mechanical properties tested indicate that the tensile strength and especially elongation of the alloys are improved with the addition of Nd and their maximum enhancing rates based on the Nd-free Mg-Sb3 alloy are 20% and 10% at 0.1% Nd, respectively. The main reason is attributed to the grain refinement by Nd. The tensile strength and especially elongation decline when Nd addition is over 0.1%, owing to the number and size increase of the needle-shaped phases on the grain boundaries with the Nd addition increasing.  相似文献   

15.
Effect of cerium on microstructure,mechanical and wetting properties of Ag-Cu-Ti filler alloy was researched with optical microscopy,scanning electron microscopy and X-ray diffraction.The results indicated that addition of cerium accelerated alloying of the filler alloy,enlarged supercooled region,caused microstructural refinement and dispersed distribution of intermetallic compounds.It resulted in the increase in microhardness and shear strength of Ag-Cu-Ti filler alloy.At the same time,cerium improved wet...  相似文献   

16.
The AZ31B magnesium alloy sheet added with 0.5 wt.% Ce was welded with friction stir welding(FSW).The microstructures and mechanical properties of the welded joint were investigated.The results showed that the microstructures in the weld nugget zone were uniform and with small equiaxed grains.The grains in the heat-affected zone and the thermo-mechanical affected zone were coarser than those in the base metal zone and the weld nugget zone.The ultimate tensile strength of AZ31B magnesium alloy added with 0.5...  相似文献   

17.
Mg-6Li and Mg-6Li-1Y (wt.%) alloys were prepared using permanent model casting method, and microstructure and mechanical properties were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), optical microscopy (OM), energy dis-persive spectrometry (EDS), transmission electron microscopy (TEM), etc. The results showed that α-Mg and ?-Li phases existed in both al-loys, and there was also Y-enriched phase in Mg-6Li-1Y alloy. The composition of Y-enriched phase was near to the ma...  相似文献   

18.
The effect of neodymium stearate (NdSt) on cure and mechanical properties of expoxidized natural rubber with 25 mol.% epoxida-tion (ENR25) was studied in the concentration range of 0 to 2 phr, and the relationship between structure and mechanical properties of ENR25 vulcanizates was also discussed. Neodymium sterate was synthesized by saponification of stearic acid with newly formed rare earth hydroxide in water medium, and the structure of NdSt was investigated by Fourier transform infrared spectroscopy (FTIR). Crosslinking den-sity of vulcanized natural rubber was studied by equilibrium swelling method. The results indicated that the interaction force between carbox-ylic ion of NdSt prepared in the lab and Nd ion was mainly ionic bond through FTIR analysis. NdSt could accelerate the vulcanization of ENR25 and influence the network structure of ENR25 vulcanizates. The incorporation of 1 phr NdSt for ENR25 vulcanizates showed the op-timal aging resistnce.  相似文献   

19.
Good ignition-proof principle and mechanical properties were realized in Mg-Y-Ca-Zr alloy system.By adding Y and Ca elements,the ignition point of Mg-3.5Y-0.8Ca alloy was improved to over 1173 K,and the alloy could be melted in air without any protections.The ef-fect of Zr addition on the microstructures and mechanical properties of Mg-3.5Y-0.8Ca alloys were investigated,and Mg-3.5%Y-0.8%Ca-0.4%Zr alloy had good comprehensive properties with tensile strength of 190 MPa and elongation of 11%.Auger electron spectros-copy(AES) and X-ray diffraction(XRD) analysis revealed that the oxide film formed on the surface of Mg-3.5Y-0.8Ca alloy was mainly composed of Y2O3.Thermogravimetric measurements in dry air indicated that the oxidation dynamics curves measured at 773,873 and 973 K followed the cubic law.Moreover,the semiconductor characteristic of Y2O3 film and its effect on ignition-proof properties of Magnesium al-loys were discussed from the viewpoint of electrochemistry.  相似文献   

20.
In the present investigation, the effects of alloying elements (Sn, Pb) and grain refiner (Ag, Zr) on microstructure, mechanical and wear properties of as-cast Mg-Al-Zn alloys were studied. The alloys were prepared through melting-casting route under a protective atmosphere and cast into a permanent mould. The microstructure of the base alloy consisted of α-Mg, Mg17Al12 continuous eutectic phase at the grain boundary and Mg-Zn phase was distributed within the grains. Addition of Sn and Pb suppressed the formation of continuous Mg17Al12 eutectic phase and formed Pb enriched Mg2Sn precipitates at the grain boundary as well as inside the grain. The Ag and Zr addition to Mg-Al-Zn-Sn-Pb alloy suppressed the Mg17Al12 phase formation and refined the grains leading to improve mechanical properties. Addition of Sn, Pb and grain refiner (Ag, Zr) significantly enhanced the tensile strength and elongation but reduced hardness. The Ag addition imparted best tensile properties, where ultimate tensile strength (UTS) and elongation are 205?MPa and 8.0%, respectively. The fracture surfaces were examined under SEM which revealed cleavage facets and dimple formation. Therefore, the cleavage fracture and dimple rupture were considered as the dominant fracture mechanisms for developed Mg alloys. The cumulative volume loss of Mg alloys increased with sliding distance and applied load. The coefficient of friction decreased with sliding distance. The microscopic observation, analysis of the wear surface and coefficient of friction revealed that the wear mechanism of developed Mg alloys changes from abrasion oxidation to delamination wear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号