首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Studies were done to determine the fate of Escherichia coli O157:H7 in manure compost-amended soil and on carrots and green onions grown in an environmentally controlled growth chamber. Commercial dairy cattle manure compost was inoculated with a five-strain mixture of green fluorescent protein-labeled E. coli O157:H7 at 10(7) CFU g(-1) and mixed with unsterilized Tifton sandy loam soil at a ratio of 1:5. Baby carrot or green onion seedlings were planted into the manure compost-amended soil in pots, and soil samples surrounding the plant, edible carrot roots and onion bulb samples, and soil immediately beneath the roots were assayed for E. coli O157:H7 in triplicate at weekly intervals for the first 4 weeks, and every 2 weeks for the remainder of the plant growth cycle (up to 3 months). E. coli O157:H7 cell numbers decreased within 64 days by 3 log CFU/g in soil and soil beneath the roots of green onions and by more than 2 log CFU/g on onions. E. coli O157:H7 survived better during the production of carrots, with a 2.3-log CFU/g reduction in soil and a 1.7-log CFU/g reduction on carrots within 84 days. These results indicate that the type of plant grown is an important factor influencing the survival of E. coli O157:H7 both on the vegetable and in the soil in which the vegetable is grown.  相似文献   

2.
Outbreaks of enterohemorrhagic Escherichia coli O157:H7 infections associated with lettuce and other leaf crops have occurred with increasing frequency in recent years. Contaminated manure and polluted irrigation water are probable vehicles for the pathogen in many outbreaks. In this study, the occurrence and persistence of E. coli O157:H7 in soil fertilized with contaminated poultry or bovine manure composts or treated with contaminated irrigation water and on lettuce and parsley grown on these soils under natural environmental conditions was determined. Twenty-five plots, each 1.8 by 4.6 m, were used for each crop, with five treatments (one without compost, three with each of the three composts, and one without compost but treated with contaminated water) and five replication plots for each treatment. Three different types of compost, PM-5 (poultry manure compost), 338 (dairy manure compost), and NVIRO-4 (alkaline-stabilized dairy manure compost), and irrigation water were inoculated with an avirulent strain of E. coli O157:H7. Pathogen concentrations were 10(7) CFU/g of compost and 10(5) CFU/ml of water. Contaminated compost was applied to soil in the field as a strip at 4.5 metric tons per hectare on the day before lettuce and parsley seedlings were transplanted in late October 2002. Contaminated irrigation water was applied only once on the plants as a treatment in five plots for each crop at the rate of 2 liters per plot 3 weeks after the seedlings were transplanted. E. coli O157:H7 persisted for 154 to 217 days in soils amended with contaminated composts and was detected on lettuce and parsley for up to 77 and 177 days, respectively, after seedlings were planted. Very little difference was observed in E. coli O157:H7 persistence based on compost type alone. E. coli O157:H7 persisted longer (by > 60 days) in soil covered with parsley plants than in soil from lettuce plots, which were bare after lettuce was harvested. In all cases, E. coli O157:H7 in soil, regardless of source or crop type, persisted for > 5 months after application of contaminated compost or irrigation water.  相似文献   

3.
Feedlot pen soil is a source for transmission of Escherichia coli O157:H7, and therefore a target for preharvest strategies to reduce this pathogen in cattle. The objective of this study was to determine the ability of soil solarization to reduce E. coli O157:H7 in feedlot surface material (FSM). A feedlot pen was identified in which naturally occurring E. coli O157:H7 was prevalent and evenly distributed in the FSM. Forty plots 3 by 3 m were randomly assigned such that five plots of each of the solarization times of 0, 1, 2, 3, 4, 6, 8, and 10 weeks were examined. Temperature loggers were placed 7.5 cm below the surface of each plot, and plots to be solarized were covered with clear 6-mil polyethylene. At each sampling time, five FSM samples were collected from each of five solarized and five unsolarized plots. E. coli concentrations and E. coli O157:H7 presence by immunomagnetic separation and plating were determined for each FSM sample. Initial percentages of E. coli O157:H7-positive samples in control and solarized FSM were 84 and 80%, respectively, and did not differ (P > 0.05). E. coli O157:H7 was no longer detectable by 8 weeks of solarization, but was still detected in unsolarized FSM at 10 weeks. The average initial concentration of E. coli in FSM was 5.56 log CFU/g and did not differ between treatments (P > 0.05). There was a 2.0-log decrease of E. coli after 1 week of solarization, and a >3.0-log reduction of E. coli by week 6 of solarization (P, 0.05). E. coli levels remained unchanged in unsolarized FSM (P > 0.05). Daily peak FSM temperatures were on average 8.7°C higher for solarized FSM compared with unsolarized FSM, and reached temperatures as high as 57°C. Because soil solarization reduces E. coli O157:H7, this technique may be useful for reduction of persistence and transmission of this pathogen in cattle production, in addition to remediation of E. coli O157:H7-contaminated soil used to grow food crops.  相似文献   

4.
The survival characteristics of Escherichia coli O157:H7 in silage derived from contaminated grass were investigated. The survival of other enteric bacteria was also investigated to determine if E. coli O157:H7 demonstrates enhanced acid tolerance in comparison. Samples of chopped grass were treated as follows: (i) no additive (control); (ii) inoculation with E. coli O157:H7 to a final concentration of log10 4.0 CFU g(-1); (iii) addition of an 85% solution of formic acid at 3.0 ml kg(-1) grass; and (iv) addition of both E. coli O157:H7 and formic acid, at the above concentrations. Treated 6-kg grass samples were packed into laboratory silos, sealed, and stored at 15 degrees C for up to 180 days. Individual replicate silos were removed from storage periodically and subjected to microbiological and chemical analyses. Chemical analyses of the silage samples indicated that lactic acid-dominant fermentations, with a rapid drop in pH, occurred. Numbers of enteric bacteria decreased from log10 7.0 to 8.0 CFU g(-1) to undetectable levels within 19 days' storage. E. coli O157:H7 did not survive the silage fermentation process, with numbers declining from approximately log10 4.0 CFU g(-1) to undetectable levels within 19 days of ensiling. The pattern of decline in numbers of E. coli O157:H7 was the same as that for the enteric bacteria, indicating that under the conditions tested, the acid tolerance of E. coli O157:H7 was not significantly different from the acid tolerance of other enteric bacteria. This study found that E. coli O157:H7 did not survive a good silage fermentation process, indicating that properly ensiled grass that is correctly stored is unlikely to be a vector for the transmission of the pathogen among cattle.  相似文献   

5.
The investigation of fecal bacterial die-off in various agricultural and catchment related matrices remains important because of the growing concern over pathogens in agricultural environments and watercourses. The aim of this research was to investigate the die-off of Escherichia coli within cattle manure (both slurry [liquid mix of excrement and urine produced by housed livestock] and feces), soil, and runoff water and to determine if cell numbers would be influenced by the presence of cattle manure within soil and runoff water. E. coli survived better within feces than in slurry; cells within feces declined from 7.5 to 3.3 log CFU g(-1) in 76 days. Within slurry, cells fell from 8.5 log CFU g(-1) to below levels of detection by day 42. E. coli died off more quickly within manure and slurry than in soil amended with the same fecal material, and declined significantly faster within microcosms when introduced to the soil via sterile water rather than cattle manure. E. coli was found to decline more rapidly within wet (50% moisture w/w), rather than dry (25% moisture w/w), soil. Conversely, in runoff water, die-off of E. coli was increased in the presence of feces. Overall, E. coli die-off was most rapid in water incorporated with cattle manure > unincorporated cattle manure > soil incorporated with cattle manure. The derived die-off characteristics including half-life and decimal reduction times can now provide (i) input for predictive models and (ii) information upon which to consider mitigation strategies associated with both manure and land management.  相似文献   

6.
In two cultivars of carrots (Daucus carota L) drought stress was imposed at different developmental stages in order to examine how the marketable and nutritional quality was influenced. Experiments were conducted on both a sandy loam soil and a coarse sandy soil. Although drought stress during a 3-week period at any growth stage reduced total tap-root production, the yield of marketable tap roots increased on the sandy loam soil when drought stress occurred just prior to harvest. This was the result of a decrease in the proportion of split roots when drought stress was imposed during this period. An increased risk of infection by common scab (Streptomyces scabies) was seen when drought stress occurred during early growth. Cultivar differences in susceptibility to split roots and common scab were observed. Significant differences in chemical composition between cultivars were seen. However, drought stress imposed at a specific growth stage did not influence the chemical composition of tap roots in any consistent manner. When drought stress occurred during early growth on the coarse sandy soil the concentration of dry matter was low and that of potassium and nitrate high. However, the opposite was found on the same soil when drought stress occurred just prior to harvest. Averaging the effect of drought periods and cultivars, drought stress was observed to increase the concentration of sucrose in tap roots from the sandy loam soil and decrease that of phosphorus in tap roots from the coarse sandy soil. Various effects on magnesium, β-carotene and vitamin C were detected. Severe drought stress increased the storage losses due to the development of diseases. © 1997 SCI  相似文献   

7.
The effect of mild water stress on the response of herbage grown in sandy or loam soils to sodium nitrate fertilizer has been investigated. Sodium nitrate was applied at the equivalent of 32 kg Na ha−1 to perennial ryegrass and white clover grown in pots with sand, loam and mixed soils and irrigated daily. One half of the pots were subjected to water stress by withholding irrigation water for three days each week. Water stress reduced herbage yield but did not affect the response to sodium fertilizer, except that the ash concentration of grass was increased only when water stress was applied as well as sodium fertilizer. The sodium fertilizer increased herbage sodium concentrations and decreased calcium and magnesium concentrations. It also increased the potassium concentration in clover and in herbage grown in sandy but not loam or mixed soils. Clover and grass had similar sodium and magnesium concentration, but clover contained more nitrogen, potassium and calcium than grass. Therefore, under the conditions of this experiment, the increase in herbage sodium concentration with sodium fertilizer was consistent and not affected by water stress, soil type or herbage species. Changes in herbage potassium concentration, however, were inconsistent, which detracts from the value of sodium fertilizer for reducing hypomagnesaemia in ruminants. © 1999 Society of Chemical Industry  相似文献   

8.
Shiga toxin-producing Escherichia coli (STEC) produce toxins that have been associated with several human illnesses. E. coli O157:H7 is the most well-studied STEC and was first associated with consumption of improperly cooked ground beef in 1982. E. coli O157:H7 is not the only foodborne STEC because other STEC serotypes are also associated with human illnesses. The objective of this study was to assess prevalence of STEC in 23 yearling beef (Angus) heifers grazing an irrigated grass pasture in spring (April), summer (July), fall (October), and winter (December) of 1999. A total of 86 fecal samples were rectally collected and were subjected to microbiological testing for the presence of STEC. Nine E. coli isolates from five heifers (one in spring and fall and three in winter) were toxic to Vero cells. Of these isolates, four were E. coli O157:H7, two belonged to the serogroup O6, one O39:NM, one O113:H-, and the final isolate was untypable. The STEC prevalence rate in our herd ranged from 4% (spring) to 15% (winter). Based on detecting both O157:H7 and non-O157:H7 STEC in our heifers, it is clear that screening fecal samples should not be limited to E. coli O157:H7. Identification of STEC-positive cattle prior to slaughter should help in reducing the risk of beef contamination with such foodborne pathogens if pre- and/or postharvest control measures are applied to such animals.  相似文献   

9.
The prevalence of Escherichia coli O157:H7 on beef subprimal cuts intended for mechanical tenderization was evaluated. This evaluation was followed by the assessment of five antimicrobial interventions at minimizing the risk of transferring E. coli O157:H7 to the interior of inoculated subprimal cuts during blade tenderization (BT) or moisture enhancement (ME). Prevalence of E. coli O157:H7 on 1,014 uninoculated beef subprimals collected from six packing facilities was 0.2%. Outside round pieces inoculated with E. coli O157:H7 at 10(4) CFU/100 cm2 were treated with (i) no intervention, (ii) surface trimming, (iii) hot water (82 degrees C), (iv) warm 2.5% lactic acid (55 degrees C), (v) warm 5.0% lactic acid (55 degrees C), or (vi) 2% activated lactoferrin followed by warm 5.0% lactic acid (55 degrees C) and then submitted to BT or ME. Prevalence (n=196) of internalized (BT and ME) E. coli O157:H7 was 99%. Enumeration of E. coli 0157:H7 (n=192) revealed mean surface reductions of 0.93 to 1.10 log CFU/100 cm2 for all antimicrobial interventions. E. coli O157:H7 was detected on 3 of the 76 internal BT samples and 73 of the 76 internal ME samples. Internal ME samples with no intervention had significantly higher mean E. coli O157:H7 populations than did those internal samples treated with an intervention, but there were no significant differences in E. coli O157:H7 populations among internal BT samples. Results of this study demonstrate that the incidence of E. coli O157:H7 on the surface of beef subprimal cuts is low and that interventions applied before mechanical tenderization can effectively reduce the transfer of low concentrations of E. coli O157:H7 to the interior of beef subprimal cuts.  相似文献   

10.
Escherichia coli O157:H7 is a pathogenic bacterium that causes acute illness in humans, but mature cattle are not affected. E. coli O157:H7 can enter the human food supply from cattle via fecal contamination of beef carcasses at slaughter. Previous attempts to correlate the incidence of E. coli O157:H7 with specific diets or feeding management practices gave few statistically significant or consistent findings. However, recent work indicates that cattle diets may be changed to decrease fermentation acid accumulation in the colon. When fermentation acids accumulate in the colon and pH decreases, the numbers of acid-resistant E. coli increase; acid-resistant E. coli are more likely to survive the gastric stomach of humans. When cattle were fed hay for a brief period (<7 d), acid-resistant E. coli numbers declined dramatically. Other workers have shown that brief periods of hay feeding can also decrease the number of cattle shedding E. coli O157:H7, and a similar trend was observed if cattle were taken off feed and exposed to simulated transport. These observations indicate that cattle feeding management practices may be manipulated to decrease the risk of foodborne illness from E. coli, but further work will be needed to confirm these effects.  相似文献   

11.
A study was done to characterize the shedding of foodborne pathogenic bacteria by Caenorhabditis elegans, evaluate the persistence of worm populations cocultured with foodborne pathogens, and determine if C. elegans disperses ingested pathogens in soil as a result of shedding. Escherichia. coli O157:H7, Salmonella enterica serotype Poona, and Listeria monocytogenes, as well as E. coli OP50, a non-pathogenic strain, were studied. Synchronous populations of C. elegans were fed for 24 h on confluent lawns of nalidixic acid-adapted bacteria. C. elegans shed viable cells of ingested bacteria on tryptic soy agar supplemented with nalidixic acid (50 microg ml(-1)) (TSAN) throughout a 5-h post-feeding period. C. elegans persisted for up to 10 days by feeding on bacteria that had been shed and grew on TSAN. Eggs harvested from C. elegans cultured on shed foodborne pathogens had the same level of viability as those collected from C. elegans grown on shed E. coli OP50. After 6-7 days, 78%, 64%, 64%, and 76% of eggs laid by C. elegans that had fed on E. coli O157:H7, S. Poona, L. monocytogenes, and E. coli OP50, respectively, were viable. Worms fed on E. coli O157:H7 were inoculated into soil and soil amended with turkey manure compost. Populations of C. elegans persisted in compost-amended soil for at least 7 days but declined in unamended soil. E. coli O157:H7 was detected at 4 and 6 days post inoculation in compost-amended and unamended soil, and in unamended soil inoculated with E. coli OP50. Populations of E. coli O157:H7 in soil amended with turkey manure compost were significantly(alpha = 0.05) higher than those in unamended soil. Results indicate that C. elegans can act as a vector to disperse foodborne pathogens in soil, potentially resulting in increased risk of contaminating the surface of pre-harvest fruits and vegetables.  相似文献   

12.
Three groups of six yearling steers (three rumen fistulated plus three nonfistulated) fed one of three different grain diets (85% cracked corn, 15% whole cottonseed and 70% barley, or 85% barley) were inoculated with 10(10) CFU of Escherichia coli O157:H7 strain 3081, and the presence of the inoculated strain was followed in the rumen fluid and feces for a 10-week period. E. coli O157:H7 was rapidly eliminated from the rumen of the animals on all three diets but persisted in the feces of some animals up to 67 days after inoculation, suggesting that the bovine hindgut is the site of E. coli O157:H7 persistence. A significant difference existed in the levels of E. coli O157:H7 shed by the animals among diets on days 5, 7, 49, and 63 after inoculation (P < 0.05). No significant difference was found between the levels shed among diets on days 9 through 42 and on day 67 (P > 0.05). The number of animals that were culture positive for E. coli O157:H7 strain 3081 during the 10-week period was significantly higher for the barley fed group (72 of 114 samplings) as opposed to the corn fed group (44 of 114 samplings) (P < 0.005) and the cottonseed and barley fed group (57 of 114 samplings) (P < 0.05). The fecal pH of the animals fed the corn diet was significantly lower (P < 0.05) than the fecal pH of the animals fed the cottonseed and barley and barley diets, likely resulting in a less suitable environment for E. coli O157:H7 in the hindgut of the corn fed animals. E. coli O157:H7 strain 3081 was present in 3 of 30 (corn, 1 of 10; cottonseed, 1 of 10; barley, 1 of 10) animal drinking water samples, 3 of 30 (corn, 1 of 10; cottonseed, 0 of 10; barley, 2 of 10) water trough biofilm swabs, 5 of 30 (corn, 0 of 10; cottonseed, 2 of 10; barley, 3 of 10) feed samples, and 30 of 30 manure samples taken from the pens during the entire experimental period. Mouth swabs of the steers were also culture positive for E. coli O157:H7 strain 3081 in 30 of 180 samples (corn, 7 of 60; cottonseed, 4 of 60; barley, 19 of 60) taken during the 10-week period. Minimizing environmental dissemination of E. coli O157:H7 in conjunction with diet modification may reduce numbers of E. coli O157:H7-positive cattle.  相似文献   

13.
This study determined the distribution patterns of Escherichia coli O157:1H7 in ground beef when a contaminated beef trim was introduced into a batch of uncontaminated beef trims prior to grinding in a small-scale laboratory grinder. A beef trim (15.3 +/- 2 g) was inoculated with a rifampicin-resistant strain of E. coli O157:H7 (E. coli O157:H7rif) and introduced into a stream of noncontaminated beef (322 +/- 33 g) prior to grinding. Seven inoculum levels (6, 5, and 4 total log CFU [high]; and 3, 2, 1, and 0 total log CFU [low]) were studied in triplicate. E. coli O157:H7rif was not detected in 3.1 to 43% of the ground beef inoculated with the high levels or in 3.4 to 96.9% of the ground beef inoculated with the low levels. For all inoculum levels studied, the five ground beef fractions (each 7.8 +/- 0.6 g) with the highest pathogen levels accounted for 59 to 100% of the total pathogens detected. For all inoculum levels, there was a linear relationship between the quantity of ground beef containing E. coli O157:H7rif and the inoculum level. The quantity of E. coli O157:H7rif in the beef remaining in the grinder was proportional to the inoculum level and was related to the location in the grinder. Different components of the grinder accumulated E. coli O157:H7rif in different quantities, with the most significant accumulation being in the nut (collar) that attaches the die to the blade. This study determined specific distribution patterns of E. coli O157:H7rif after the grinding of a contaminated beef trim along with uncontaminated trims, and the results indicate that the grinding operation should be regarded as a means of distribution of microbial contamination in risk analyses of ground beef operations.  相似文献   

14.
An assessment of the risk of illness associated with Escherichia coli O157:H7 in ground beef was drafted in 2001. The exposure assessment considers farm, slaughter, and preparation factors that influence the likelihood of humans consuming ground beef servings containing E. coli O157:H7 and the number of cells in a contaminated serving. Apparent seasonal differences in prevalence of cattle infected with E. coli O157:H7 corresponded to seasonal differences in human exposure. The model predicts that on average 0.018% of servings consumed during June through September and 0.007% of servings consumed during the remainder of the year are contaminated with one or more E. coli O157:H7 cells. This exposure risk is combined with the probability of illness given exposure (i.e., dose response) to estimate a U.S. population risk of illness of nearly one illness in each 1 million (9.6 x 10(-7)) servings of ground beef consumed. Uncertainty about this risk ranges from about 0.33 illness in every 1 million ground beef servings at the 5th percentile to about two illnesses in every 1 million ground beef servings at the 95th percentile.  相似文献   

15.
Fresh bovine manure was mechanically incorporated into loamy sand and silty clay loam Wisconsin soils in April 2004. At varying fertilization-to-planting intervals, radish, lettuce, and carrot seeds were planted; crops were harvested 90, 100, 110 or 111, and 120 days after manure application. As an indicator of potential contamination with fecal pathogens, levels of Escherichia coli in the manure-fertilized soil and presence of E. coli on harvested vegetables were monitored. From initial levels of 4.0 to 4.2 log CFU/g, E. coli levels in both manure-fertilized soils decreased by 2.4 to 2.5 log CFU/g during the first 7 weeks. However, E. coli was consistently detected from enriched soil samples through week 17, perhaps as a result of contamination by birds and other wildlife. In the higher clay silty clay loam soil, the fertilization-to-planting interval affected the prevalence of E. coli on lettuce but not on radishes and carrots. Root crop contamination was consistent across different fertilization-to-harvest intervals in silty clay loam, including the National Organic Program minimum fertilization-to-harvest interval of 120 days. However, lettuce contamination in silty clay loam was significantly (P < 0.10) affected by fertilization-to-harvest interval. Increasing the fertilization-to-planting interval in the lower clay loamy sand soil decreased the prevalence of E. coli on root crops. The fertilization-to-harvest interval had no clear effect on vegetable contamination in loamy sand. Overall, these results do not provide grounds for reducing the National Organic Program minimum fertilization-to-harvest interval from the current 120-day standard.  相似文献   

16.
The objective of this study was to determine the survival and growth characteristics of Escherichia coli O157:H7 in whey. A five-strain mixture of E. coli O157:H7 was inoculated into 100 ml of fresh, pasteurized or unpasteurized Cheddar cheese whey (pH 5.5) at 10(5) or 10(2) CFU/ml, and stored at 4, 10 or 15 degrees C. The population of E. coli O157:H7 (on Sorbitol MacConkey agar supplemented with 0.1% 4-methylumbelliferyl-beta-D-glucuronide) and lactic acid bacteria (on All Purpose Tween agar) were determined on days 0, 1, 4, 7, 14, 21 and 28. At all storage temperatures, survival of E. coli O157:H7 was significantly higher (P<0.01) in the pasteurized whey compared to that in the unpasteurized samples. At 10 and 15 degrees C, E. coli O157:H7 in pasteurized whey significantly (P<0.05) increased during the first week of storage, followed by a decrease thereafter. However at the same temperatures, E. coli O157:H7 exhibited a steady decline in the unpasteurized samples from day 0. At 4 degrees C, E. coli O157:H7 did not grow in pasteurized and unpasteurized whey; however, the pathogen persisted longer in pasteurized samples. At all the three storage temperatures, E. coli O157:H7 survived up to day 21 in the pasteurized and unpasteurized whey. The initial load of lactic acid bacteria in the unpasteurized whey samples was approximately 7.0 log10 CFU/ml and, by day 28, greater than 3.0 log10 CFU/ml of lactic acid bacteria survived in unpasteurized whey at all temperatures, with the highest counts recovered at 4 degrees C. Results indicate the potential risk of persistence of E. coli O157:H7 in whey in the event of contamination with this pathogen.  相似文献   

17.
Liquid hog manure is routinely applied to farm land as a crop fertilizer. However, this practice raises food safety concerns, especially when manure is used on fruit and vegetable crops. The objectives of this project were to evaluate the persistence of Escherichia coli and Salmonella in surface soil after application of liquid hog manure to fields where pickling cucumbers were grown and to verify the microbiological quality of harvested cucumbers. Mineral fertilizers were replaced by liquid hog manure at various ratios in the production of pickling cucumbers in a 3-year field study. The experimental design was a randomized complete block comprising four replicates in sandy loam (years 1, 2, and 3) and loamy sand (year 3). Soil samples were taken at a depth of 20 cm every 2 weeks after June application of organic and inorganic fertilizers. Vegetable samples were also taken at harvest time. Liquid hog manure, soil, and vegetable (washed and unwashed) samples were analyzed for the presence of Salmonella and E. coli. An exponential decrease of E. coli populations was observed in surface soil after the application of manure. The estimated average time required to reach undetectable concentrations of E. coli in sandy loam varied from 56 to 70 days, whereas the absence of E. coli was estimated at 77 days in loamy sand. The maximal Salmonella persistence in soil was 54 days. E. coli and Salmonella were not detected in any vegetable samples.  相似文献   

18.
The antibacterial effect of low concentrations of monocaprylin on Escherichia coli O157:H7 in apple juice was investigated. Apple juice alone (control) or containing 2.5 mM (0.055%) or 5 mM monocaprylin was inoculated with a five-strain mixture of E. coli O157:H7 at approximately 6.0 log CFU/ml. The juice samples were stored at 23 or 4 degrees C for 14 or 21 days, respectively, and the population of E. coli O157:H7 was determined on tryptic soy agar plates supplemented with 0.6% yeast extract. At both storage temperatures, the population of E. coli O157:H7 in monocaprylin-supplemented juice samples was significantly lower (P < 0.05) than that in the control samples. The concentration of monocaprylin and the storage temperature had a significant effect on the inactivation of E. coli O157:H7 in apple juice. Monocaprylin at 5 mM was significantly more effective than 2.5 mM monocaprylin for killing E. coli O157:H7 in apple juice. Inactivation of E. coli O157:H7 by monocaprylin was more pronounced in juice stored at 23 degrees C than in the refrigerated samples. Results of this study indicated that monocaprylin is effective for killing E. coli O157:H7 in apple juice, but detailed sensory studies are needed to determine the organoleptic properties of apple juice containing monocaprylin.  相似文献   

19.
Previous studies conducted in our laboratory revealed that Escherichia coli O157:H7 cells capable of producing colanic acid (CA), the acidic polysaccharide of mucoid slime, had increased tolerance to sublethal heat and the extreme pH of microbiological culture media. This study was undertaken to determine the effect of CA on the fate of E. coli O157:H7 during the processing and storage of an acid food: yogurt. Pasteurized and homogenized whole milk was inoculated with a wild-type E. coli O157:H7, its CA-deficient mutant, or a mixture (1:1) of the two strains. Set yogurt was processed from the contaminated milk and stored at 4 degrees and 15 degrees C for 3 weeks. Samples of milk and yogurt were withdrawn during processing and storage and analyzed for total plate counts and populations of E. coli O157:H7 and starter cultures. The results showed that E. coli O157:H7 survived longer in yogurt stored at 15 degrees C than at 4 degrees C. Cells of E. coli O157:H7 deficient in CA production died off more rapidly than those of the parent strain. This suggests that CA plays a role in protecting cells of E. coli O157:H7 from stress during the processing and storage of set yogurt.  相似文献   

20.
ABSTRACT: The purpose of this research was to develop empirical models that describe the amount and distribution of ground beef contaminated with Escherichia coli O157:H7 when a contaminated beef trim is introduced into a batch of uncontaminated beef before processing in a mid-size commercial grinder (34 g/s). A beef trim was inoculated with a rifampacin-resistant strain of E. coli O157:H7 and added to a batch of noncontaminated trims at the grinding step. To study the distribution of the E. coli O157:H7rif in the ground beef, 6 treatments with different inoculum levels (1 to 6 log10 colony-forming units [CFU]) were tested. Removal or pick up of the residual contamination with E. coli O157:H7rif left in the grinder was evaluated. E. coli O157:H7rif was detected in 9% to 86% of the total ground beef for the 1 to 6 log10 CFU inoculum levels, respectively. E. coli O157:H7rif contamination was detected in the collar that fixes the grinder's die and blade to the hub. An exponential algorithm described the relationship between the quantities of ground beef containing E. coli O157:H7rif and the inoculum level ( R 2= 0.82). Distribution models based on a Chi-squared algorithm were developed for each inoculum level describing the contamination level as a function of the batch fraction processed ( R 2= 0.81 to 0.99). The results of this study corroborate that when beef processors test for pathogenic contamination in a mid-scale grinder, they should test the beef residues in the collar that fixes the grinder's die and blade to the hub.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号