共查询到20条相似文献,搜索用时 0 毫秒
1.
U. Hammerschmidt 《International Journal of Thermophysics》2003,24(3):675-682
The pulse hot strip method is a newly developed dynamic method to measure the thermal conductivity and thermal diffusivity of solids. It is based on monitoring the temperature response of a sample to a very short heat pulse liberated by a strip heat source. The instrument's uncertainty is estimated to be less than 3% for both quantities. 相似文献
2.
The thermal conductivity and thermal diffusivity of liquid n-pentane have been measured over the temperature range from 293 to 428 K at pressures from 3.5 to 35 MPa using a transient hot-wire instrument. It was determined that the results were influenced by fluid thermal radiation, and a new expression for this effect is presented. The uncertainty of the experimental results is estimated to be better than ±0.5% for thermal conductivity and ±2% for thermal diffusivity. The results, corrected for fluid thermal radiation, are correlated as functions of temperature and density with a maximum uncertainty of ±2% for thermal conductivity and ±4% for thermal diffusivity. Derived values of the isobaric specific heat are also given. 相似文献
3.
This paper presents absolute measurements for the thermal conductivity and thermal diffusivity of toluene obtained with a transient hot-wire instrument employing coated wires over the density interval of 735 to 870 kgm–3. A new expression for the influence of the wire coating is presented, and an examination of the importance of a nonuniform wire radius is verified with measurements on argon from 296 to 323 K at pressures to 61 MPa. Four isotherms were measured in toluene between 296 and 423 K at pressures to 35 MPa. The measurements have an uncertainty of less than ±0.5% for thermal conductivity and ±2% for thermal diffusivity. Isobaric heat capacity results, derived from the measured values of thermal conductivity and thermal diffusivity, using a density determined from an equation of state, have an uncertainty of ±3% after taking into account the uncertainty of the applied equation of state. The measurements demonstrate that isobaric specific heat determinations can be obtained successfully with the transient hot wire technique over a wide range of fluid states provided density values are available. 相似文献
4.
This paper presents new absolute measurements for the thermal conductivity and thermal diffusivity of gaseous argon obtained with a transient hot-wire instrument. Six isotherms were measured in the supercritical dense gas at temperatures between 296 and 423 K and pressures up to 61 MPa. A new analysis for the influence of temperature-dependent properties and residual bridge unbalance is used to obtain the thermal conductivity with an uncertainty of less than 1% and the thermal diffusivity with an uncertainty of less than 4%. Isobaric heat capacity results were derived from measured values of thermal conductivity and thermal diffusivity using a density calculated from an equation of state. The heat capacities presented here have a nominal uncertainty of 4% and demonstrate that this property can be obtained successfully with the transient hot wire technique over a wide range of fluid states. The technique will be useful when applied to fluids which lack specific heat data. 相似文献
5.
Low-pressure thermal conductivity and thermal diffusivity measurements are reported for argon and nitrogen in the temperature range from 295 to 350 K at pressures from 0.34 to 6.9 MPa using an absolute transient hot-wire instrument. Thermal conductivity measurements were also made with the same instrument in its steady-state mode of operation. The measurements are estimated to have an uncertainty of 1% for the transient thermal conductivity, 3% for the steady-state thermal conductivity, and 4% for thermal diffusivity. The values of isobaric specific heat, derived from the measured thermal conductivity and thermal diffusivity, are considered accurate to 5% although this is dependent upon the uncertainty of the equation of state utilized.Paper presented at the Sixteenth European Conference on Thermophysical Properties, September 1–4, 2002, London, United Kingdom 相似文献
6.
U. Hammerschmidt 《International Journal of Thermophysics》2003,24(5):1291-1312
A new method is developed for the measurement of thermal conductivity. It combines characteristic advantages of steady-state and transient techniques but avoids major drawbacks of both these classes of methods. On the basis of a simple transient hot wire (THW) or transient hot-strip (THS) arrangement, a direct indicating thermal-conductivity meter is realized by adding only one temperature sensor. After a short settling time during which all transients die out, the instrument operates under quasi-steady state conditions. No guard heaters are required because outer boundaries are free to change with time. The instrument's uncertainty is provisionally estimated to be 3%. 相似文献
7.
Thermal radiation calorimetry has been applied to measure the thermal diffusivity of a solid specimen, along with simultaneous measurements of specific heat capacity and thermal conductivity. In this calorimeter, a disk-shaped solid specimen whose surfaces are blackened is heated and cooled slowly on one face by irradiation in a vacuum chamber. A quasi-steady-state approximation in which a linear temperature gradient within the specimen was assumed is considered in the analysis. The validity of this approximation was confirmed by the results of computer simulation based on the control-volume method. Measurements of Pyroceram 9606 and Pyrex 7740 by use of thermocouples in the temperature range between 250 and 400°C gave values consistent with those obtained by previous authors, within experimental error, for all three thermophysical properties. 相似文献
8.
J. E. Graebner 《International Journal of Thermophysics》1998,19(2):511-523
The thermal conductivity of natural, gem-quality diamond, which can be as high as 2500 Wm–1 K–1 at 25°C, is the highest of any known material. Synthetic diamond grown by chemical vapor deposition (CVD) of films up to 1 mm thick exhibits generally lower values of but under optimal growth conditions it can rival gem-quality diamond with values up to 2200 Wm–1 K–1. However, it is polycrystalline and exhibits a columnar microstructure. Measurements on free-standing CVD diamond, with a thickness in the range 25–400 m, reveal a strong gradient in thermal conductivity as a function of position z from the substrate surface as well as a pronounced anisotropy with respect to z. The temperature dependence of in the range 4 to 400 K has been analyzed to determine the types and numbers of phonon scattering centers as a function of z. The defect structure, and therefore the thermal conductivity, are both correlated with the microstructure. Because of the high conductivity of diamond, these samples are thermally thin. For example, laser flash data for a 25-m-thick diamond sample is expected to be virtually the same as laser flash data for a 1-m-thick fused silica sample. Several of the techniques described here for diamond are therefore applicable to much thinner samples of more ordinary material. 相似文献
9.
A transient short-hot-wire technique has been successfully used to measure the thermal conductivity and thermal diffusivity of molten salts (NaNO3, Li2CO3/K2CO3, and Li2CO3/Na2CO3) which are highly corrosive. This method was developed from the hot-wire technique and is based on two-dimensional numerical solutions of unsteady heat conduction from a short wire with the same length-to-diameter ratio and boundary conditions as those used in the actual experiments. In the present study, the wires are coated with a pure Al2O3 thin film by using a sputtering apparatus. The length and radius of the hot wire and the resistance ratio of the lead terminals and the entire probe are calibrated using water and toluene with known thermophysical properties. Using such a calibrated probe, the thermal conductivity and thermal diffusivity of molten nitrate are measured within errors of 3 and 20%, respectively. Also, the thermal conductivity of the molten carbonates can be measured within an error of 5%, although the thermal diffusivity can be measured within an error of 50%. 相似文献
10.
B. Hay S. Barré J-R. Filtz M. Jurion D. Rochais P. Sollet 《International Journal of Thermophysics》2006,27(6):1803-1815
The thermal characterization of a material under its conditions of use (temperature, pressure, etc.) is an essential step to check its adequacy with regard to a specific application and to predict its behavior. For needs of material characterization, Commissariat à l’Energie Atomique (CEA) has developed with Laboratoire National de Métrologie et d’Essais (LNE) a new apparatus to study thermophysical properties of solid materials in the range from 300 to 3300 K. This setup allows measurements of either the thermal diffusivity by the laser flash method or the specific heat by drop calorimetry. First, thermal diffusivity measurements have been performed on Armco iron and POCO AXM-5Q1 graphite. The measured values are in agreement with results obtained by other laboratories with a relative deviation of less than 6%.Paper presented at the Seventeenth European Conference on Thermophysical Properties, September 5–8, 2005, Bratislava, Slovak Republic. 相似文献
11.
Jaromir Bilek John Atkinson William Wakeham 《International Journal of Thermophysics》2007,28(2):496-505
The paper reports new measurements of the thermal conductivity of molten lead at temperatures from 600 to 750 K. The measurements
have been carried out with an updated version of a modified transient hot-wire (THW) method, where the hot-wire sensor is
embedded within an insulating substrate with a planar geometry. However, unlike previous sensors of the same type, the updated
sensor works with the hot-wire divided into three thermally isolated parts. The operation of this sensor has been modeled
theoretically using a finite-element (FE) analysis and has subsequently been confirmed by direct observation. The new sensor
is demonstrated to have a higher sensitivity and a better signal-to-noise ratio than earlier sensors. Molten lead is used
as the test fluid. It has the lowest thermal conductivity of any material we have yet studied. This allows us to probe the
limits of our sensor system for the thermal conductivity of high-temperature melts. It is estimated that the uncertainty of
the measurements is 3% over the temperature range studied. The results are used to examine the application of the Wiedemann–Franz
(W-F) relationship. 相似文献
12.
P. L. Woodfield J. Fukai M. Fujii Y. Takata K. Shinzato 《International Journal of Thermophysics》2008,29(4):1299-1320
The transient short-hot-wire method for measuring thermal conductivity and thermal diffusivity makes use of only one thermal-conductivity cell, and end effects are taken into account by numerical simulation. A search algorithm based on the Gauss–Newton nonlinear least-squares method is proposed to make the method applicable to high-diffusivity (i.e., low-density) gases. The procedure is tested using computer-generated data for hydrogen at atmospheric pressure and published experimental data for low-density argon gas. Convergence is excellent even for cases where the temperature rise versus the logarithm of time is far from linear. The determined values for thermal conductivity from experimental data are in good agreement with published values for argon, while the thermal diffusivity is about 10 % lower than the reference data. For the computer-generated data, the search algorithm can return both thermal conductivity and thermal diffusivity to within 0.02 % of the exact values. A one-dimensional version of the method may be used for analysis of low-density gas data produced by conventional transient hot-wire instruments. 相似文献
13.
X. Zhang W. Hendro M. Fujii T. Tomimura N. Imaishi 《International Journal of Thermophysics》2002,23(4):1077-1090
In this paper, the thermal conductivity and thermal diffusivity of four kinds of polymer melts were measured by using the transient short-hot-wire method. This method was developed from the hot-wire technique and is based on two-dimensional numerical solutions of unsteady heat conduction from a wire with the same length-to-diameter ratio and boundary conditions as those in the actual experiments. The present method is particularly suitable for measurements of molten polymers where natural convection effects can be ignored due to their high viscosities. The results have shown that the present method can be used to measure the thermal conductivity and thermal diffusivity of molten polymers within uncertainties of 3 and 6%, respectively. Further, the thermal conductivity and thermal diffusivity of solidified samples were also measured and discussed. 相似文献
14.
A transient heating technique, improving the constant-rate-heating technique for the measurements of thermal diffusivities of metals, is proposed. For a physical model of a specimen to be measured, the transient heat-conduction equation was solved with some boundary conditions, and the solution obtained was used as the principle of the present transient heating technique for determining the thermal diffusivity of the specimen. Additionally, a thermal analysis was made to satisfy a boundary condition involved in the principle, that is, the condition of radiative thermal insulation at the two end surfaces of the specimen. To verify the validity of the present technique, the thermal diffusivity of iron, whose thermophysical properties are well-known, was measured with the same apparatus as used in our previous work, and the experimental results are discussed. Moreover, thermal diffusivities of thermocouple materials, namely, constantan, chromel, and alumel, were measured by the technique in the temperature range of 360 to 680 K. 相似文献
15.
Dan-Ting Yue Zhi-Cheng Tan You-Ying Di Xin-Rong Lv Li-Xian Sun 《International Journal of Thermophysics》2006,27(1):270-281
Low-temperature specific heat capacities of foam glass (Type 150P) have been measured from 79 to 395 K by a precision automated adiabatic calorimeter. Thermal conductivities of the glass foams have been determined from 243 to 395 K with a flat steady-state heat-flow meter. Experimental results have shown that both the specific heat capacities and thermal conductivities of the 150P foam glass increased with temperature. Experimentally measured specific heat capacities have been fitted by a polynomial equation from 79 to 395 K: C
p
/J · g−1· K−1=0.6889+0.3332x− 0.0578x
2+0.0987x
3+0.0521x
4− 0.0330x
5− 0.0629x
6, where x=(T/K − 273)/158. Experimental thermal conductivities as a function of temperature (T) have been fitted by another polynomial equation from 243 to 395 K: λ/ W · m−1· K−1=0.14433+0.00129T − 2.834 × 10−6
T
2+2.18 × 10−9 T
3. In addition, thermal diffusivities (a) of the form glass sample were calculated from the specific heat capacities and thermal conductivities and have been fitted by a polynomial equation as a function of temperature (T): a/m2 · s−1=−1.68285+0.01833T − 5.84891 × 10−5 T
2+8.11942 × 10−8 T
3 − 4.24975 × 10−11 T
4.Paper presented at the Seventh Asian Thermophysical Properties Conference, August 23–28, 2004, Hefei and Huangshan, Anhui, P. R. China. 相似文献
16.
R. A. Perkins H. M. Roder C. A. Nieto de Castro 《Journal of research of the National Institute of Standards and Technology》1991,96(3):247-269
A new apparatus for measuring both the thermal conductivity and thermal diffusivity of fluids at temperatures from 220 to 775 K at pressures to 70 MPa is described. The instrument is based on the step-power-forced transient hot-wire technique. Two hot wires are arranged in different arms of a Wheatstone bridge such that the response of the shorter compensating wire is subtracted from the response of the primary wire. Both hot wires are 12.7 µm diameter platinum wire and are simultaneously used as electrical heat sources and as resistance thermometers. A microcomputer controls bridge nulling, applies the power pulse, monitors the bridge response, and stores the results. Performance of the instrument was verified with measurements on liquid toluene as well as argon and nitrogen gas. In particular, new data for the thermal conductivity of liquid toluene near the saturation line, between 298 and 550 K, are presented. These new data can be used to illustrate the importance of radiative heat transfer in transient hot-wire measurements. Thermal conductivity data for liquid toluene, which are corrected for radiation, are reported. The precision of the thermal conductivity data is ± 0.3% and the accuracy is about ±1%. The accuracy of the thermal diffusivity data is about ± 5%. From the measured thermal conductivity and thermal diffusivity, we can calculate the specific heat, Cp, of the fluid, provided that the density is measured, or available through an equation of state. 相似文献
17.
Experimental Study on the Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids 总被引:4,自引:0,他引:4
This paper reports measurements of the effective thermal conductivity and thermal diffusivity of various nanofluids using the transient short-hot-wire technique. To remove the influences of the static charge and electrical conductance of the nanoparticles on measurement accuracy, the short-hot-wire probes are carefully coated with a pure Al2O3 thin film. Using distilled water and toluene as standard liquids of known thermal conductivity and thermal diffusivity, the length and radius of the hot wire and the thickness of the Al2O3 film are calibrated before and after application of the coating. The electrical leakage of the short-hot-wire probes is frequently checked, and only those probes that are coated well are used for measurements. In the present study, the effective thermal conductivities and thermal diffusivities of Al2O3/water, ZrO2/water, TiO2/water, and CuO/water nanofluids are measured and the effects of the volume fractions and thermal conductivities of nanoparticles and temperature are clarified. The average diameters of Al2O3, ZrO2, TiO2, and CuO particles are 20, 20, 40, and 33 nm, respectively. The uncertainty of the present measurements is estimated to be within 1% for the thermal conductivity and 5% for the thermal diffusivity. The measured results demonstrate that the effective thermal conductivities of the nanofluids show no anomalous enhancement and can be predicted accurately by the model equation of Hamilton and Crosser, when the spherical nanoparticles are dispersed into fluids. 相似文献
18.
Thermal radiation calorimetry has been applied to measure the thermal conductivity and the specific heat capacity of an isolated solid specimen simultaneously. The system, in which a disk-shaped specimen and a flat heater are mounted in a vacuum chamber with the specimen heated on one face by irradiation, is presented. A theoretical formulation of the simultaneous measurement at quasi-steady state is described in detail. Noncontact temperature measurement of both specimen surfaces has been performed using pyrometers and a thermocouple set in the gap between the heater and the specimen. Pyroceram 9609 specimens, whose surfaces were blackened with colloidal graphite, were used in the measurement. The largest error involved in the noncontact temperature measurement is ±2°C in the range from 450 to 650°C. The resultant values of the specific heat capacity and the thermal conductivity deviate by about 10% from the recommended values for the Pyroceram specimen. 相似文献
19.
建立起热脉冲法的新理论模型,分析了相应的测试技术问题。利用研制的微机测试系统 种材料的热扩散系数和导热系数进行了测定,得到了满意的结果,表明本文所提出的测试广阔进可信的。 相似文献
20.
The measurement of the thermal conductivity of liquids is rather complicated due to the nature of the fluid. To the conduction, which has to be characterized, are added the natural convection, the radiative transfer, and the perturbations caused by the presence of enclosure walls. The goal of this work, composed of two parts, is to implement an experimental bench allowing the measurement of the thermal diffusivity and thermal conductivity of liquids. The first part (Part I) presented here, is about pure conduction and focuses on several aspects involved in this measurement, which will lead one, based on theoretical and practical considerations, to choose a pulse method in a one-dimensional (1D) and cylindrical geometry to solve the problem. In the second section of this part, the problem of the parameters estimation is investigated with the presence of the walls of the measuring cell and this will allow us to define the characteristics of the walls (thickness and thermophysical properties). The entire problem is treated through the thermal quadrupoles method. Finally, in a last section, a setup at room temperature is described. The second part (Part II) of this work that is presented in another paper will show how it is possible to get rid of the convection by a judicious choice of the extension of the measuring cell and how the radiation effects can be taken into account to perform measurements at high temperatures (up to 500°C).Paper presented at the Seventh Asian Thermophysical Properties Conference, August 23–28, 2004, Hefei and Huangshan, Anhui, P. R. China. 相似文献