首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
表面处理对40CrNiMo钢超声疲劳寿命的影响   总被引:2,自引:0,他引:2  
用超声疲劳试验技术研究40CrNiMo钢表面处理在超声振动载荷(f=20kHz,R=-1)下的疲劳寿命以及影响因素.研究结果表明,渗碳和渗氮处理能显著提高工件的超声疲劳寿命,此外具有强韧配合的微观组织超声疲劳寿命较高.研究发现,40CrNiMo钢不同类型的微观组织具有两种类型的S-N曲线,即持续下降型和阶梯下降型.扫描电镜对疲劳断口进行分析表明,超声疲劳载荷下,裂纹在试样表面或次表面缺陷处萌生,然后向里扩展.  相似文献   

4.
5.
Results of measurements of the rate of hydrogen permeation through specimens of steel 40Kh under conditions of their cathodic polarization in a 1-N aqueous solution of sulfuric acid at room temperature and a current density of 100 mA/cm2 are presented. The role of diffusion and dissolution in the formation of the hydrogen flow through the specimen is considered. Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 1, pp. 31–33, January, 1997.  相似文献   

6.
材料为2Cr13钢的某轴承壳体,其内孔表面渗氮后经研磨(或珩磨),渗氮层表面不同程度地出现肉眼可见的“麻点”,如针尖大小,为小面积剥落,造成了多批产品报废。通过对其可能的影响因素(材料、脆性、应力、工艺等)逐一分析并进行对比试验,最终确定剥落的生成原因与四氯乙烯的使用有关。  相似文献   

7.
H13模具钢在制造业有广泛的应用,大多数的工作环境比较恶劣,表面经常会出现各种失效问题,因此需要对其表面进行强化处理.单一进行激光表面强化处理时,强化层的性能往往达不到预期需求,进而采用超声辅助的方法进行强化涂层的制备.基于超声辅助激光熔覆的过程中,通过对H13模具钢进行熔覆强化层的制备,探究超声功率对熔覆层尺寸及微观...  相似文献   

8.
9.
周武  王敏  赵同新  卢军  杨旗 《金属热处理》2022,47(11):147-151
采用离子渗氮工艺对一种Fe-C-Cr-Ni-Mn-V沉淀硬化型奥氏体不锈钢进行表面改性处理。利用光学显微镜(OM)、X射线衍射(XRD)、电子探针显微分析仪(EPMA)和维氏硬度计对不同离子渗氮温度下渗层的组织和性能进行了研究。结果表明,Fe-C-Cr-Ni-Mn-V沉淀硬化型奥氏体不锈钢经430~520 ℃离子渗氮处理10 h后,试样表面均形成一层厚度均匀的渗氮层,表面硬度显著增大。随着离子渗氮温度的升高,渗层厚度增大,520 ℃渗氮时渗层厚度达到78 μm。当渗氮温度为430 ℃时,渗层表面主要由γN+CrN+γ′-Fe4N相组成;当渗氮温度升高至520 ℃时,渗层表面主要由γ′-Fe4N+CrN+ε-Fe2-3N相组成。在3种渗氮温度下,渗层中均有CrN析出,导致渗层耐蚀性低于基体组织。  相似文献   

10.
11.
沈统  杨丽  李振  冯凌宵 《金属热处理》2022,47(5):183-188
采用真空两段渗氮工艺,在不同的强渗、扩散时间下对AISI 316不锈钢进行渗氮处理,通过X射线衍射(XRD)、扫描电镜(SEM)、光学显微镜(OM)、显微硬度测试和摩擦磨损试验等分析了渗氮层的组织和性能。结果表明,经过12 h的真空渗氮后,AISI 316不锈钢表面形成了一层由γ′-Fe4N、ε-Fe2-3N和CrN等相组成的渗氮层,其表面硬度和耐磨性能相较于基体均有明显的提高。其中,渗扩时间比为1∶1(强渗6 h、扩散6 h)时的渗层厚度约为96 μm,表面硬度约为1069 HV0.5,是基体表面硬度的4.5倍,在20 N载荷下的磨损量约为基体的1/3;渗扩时间比为1∶2(强渗4 h、扩散8 h)时的渗层厚度约为120 μm,ε-Fe2-3N相衍射峰增强,在20 N载荷下的磨损量约为基体的1/30。延长扩散时间能增加渗氮层厚度,改善表面形貌,进一步提高不锈钢的耐磨性。  相似文献   

12.
13.
14.
热处理中高铬钢激光熔凝层的组织转变   总被引:1,自引:1,他引:0  
采用激光熔凝处理方法对高铬钢进行表面强化,然后在300~650℃区间回火处理,利用SEM、XRD和TEM等手段分析热处理对激光熔凝层组织的影响.结果表明,高铬钢激光熔凝处理后,得到的奥氏体组织中合金元素固溶度较高且晶粒细小,具有较高的回火稳定性.激光熔凝层450℃回火后硬度开始升高,560℃时达到最大值(672 HV0.2),回火温度高达650℃时硬度迅速降低.450℃回火后细小M23C6碳化物优先从过饱和奥氏体中析出,同时少量马氏体的生成使熔凝层硬度略有增加.560 ℃回火后由于M,C,和M23C6碳化物的析出、大量高硬度马氏体的生成以及位错强化的共同作用使硬度达到峰值,同时,马氏体组织中有少量的M,C渗碳体析出.650℃回火后基体完全转变为铁索体,析出大量层片状M3C渗碳体,硬度显著降低.  相似文献   

15.
Using AlN as nitrogen source, the gradient cemented carbide with β-phase free surface layer was fabricated in situ by one-step vacuum sintering. The β-phase free layer was explored by phase characterization, elemental-distribution analysis, microstructure and fracture observation. The results indicated that it was feasible to obtain β-phase free layer when utilizing AlN as the nitrogen source. The AlN decomposition fell appreciably to lower temperature in the presence of binder Co and Ni under vacuum sintering. The thickness of β-phase free layer could be tailored by controlling AlN contents, and the nitride former Al remained in the β-phase free layer. When applying nitrogen source AlN, the relative Ti content in the subsurface layer was lower than that with the conventional nitrogen source Ti(C,N) or TiN. By contrast, Co enrichment in the β-phase free layer is less significant than Ni as a result of higher solidification temperature. WC phases were much coarser averagely in the β-phase free layer than in the bulk, which was considered to be favorable for resisting against fracture. The β-phase free layer containing Al played a substantially improved role on the transverse rupture strength when AlN addition was 0.6 wt% and 1.2 wt%, while it is detrimental to the transverse rupture strength due to the formation of the intermetallic phase of Al and binder when AlN addition was 1.8 wt%.  相似文献   

16.
以单程切入式平面磨削淬硬加工试验为基础,利用X射线衍射仪和透射电镜对40Cr钢磨削淬硬层组织的形成及其变化进行了研究,进而阐明了磨削淬硬层组织的形成机理.结果表明,40Cr钢磨削淬硬层由板条马氏体和少量微细孪晶组成;在磨削温度场和应力-应变场的耦合作用下,磨削淬硬层中的马氏体含量以及板条马氏体特征尺寸沿层深呈现不同的变化趋势,马氏体内部的位错密度及孪晶数则随层深的增加而逐渐降低.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号