首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymicrobial sepsis induced by cecal ligation and puncture (CLP) reproduces many of the pathophysiologic features of septic shock. In this study, we demonstrate that mRNA for a broad range of pro- and anti-inflammatory cytokine and chemokine genes are temporally regulated after CLP in the lung and liver. We also assessed whether prophylactic administration of monophosphoryl lipid A (MPL), a nontoxic derivative of lipopolysaccharide (LPS) that induces endotoxin tolerance and attenuates the sepsis syndrome in mice after CLP, would alter tissue-specific gene expression post-CLP. Levels of pulmonary interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-alpha), granulocyte colony-stimulating factor (G-CSF), IL-1 receptor antagonist (IL-1ra), and IL-10 mRNA, as well as hepatic IL-1beta, IL-6, gamma interferon (IFN-gamma), G-CSF, inducible nitric oxide synthase, and IL-10 mRNA, were reduced in MPL-pretreated mice after CLP compared to control mice. Chemokine mRNA expression was also profoundly mitigated in MPL-pretreated mice after CLP. Specifically, levels of pulmonary and hepatic macrophage inflammatory protein 1alpha (MIP-1alpha), MIP-1beta, MIP-2, and monocyte chemoattractant protein-1 (MCP-1) mRNA, as well as hepatic IFN-gamma-inducible protein 10 and KC mRNA, were attenuated in MPL-pretreated mice after CLP. Attenuated levels of IL-6, TNF-alpha, MCP-1, MIP-1alpha, and MIP-2 in serum also were observed in MPL-pretreated mice after CLP. Diminished pulmonary chemokine mRNA production was associated with reduced neutrophil margination and pulmonary myeloperoxidase activity. These data suggest that prophylactic administration of MPL mitigates the sepsis syndrome by reducing chemokine production and the recruitment of inflammatory cells into tissues, thereby attenuating the production of proinflammatory cytokines.  相似文献   

2.
Serum concentrations of tumour necrosis factor alpha (TNF-alpha), interleukin-1 receptor antagonist (IL-1ra), interferon gamma (IFN-gamma), interleukin-6 (IL-6) and interleukin-10 (IL-10) were studied in 31 patients with haematological malignancies during febrile neutropenia. Samples were obtained when blood cultures were performed (time 0) and, when possible, after 2, 4, 6, 12 and 24 h. Increased levels of all cytokines were detected after start of fever with peak values in gram-negative (Gr-) bacteraemias after 2 h (TNF-alpha, IL-1ra and IFN-gamma), 4 h (IL-6) and 6 h (IL-10), respectively. At time 0 the median TNF-alpha value was higher in the Gr- group (80 pg/ml; range 54-516 pg/ml) as compared to both gram-positive bacteraemias (Gr+, 14 pg/ml; range 7-60 pg/ml; P < 0.05) and blood culture negative episodes (BCN, 8 pg/ml; range 0-87 pg/ml; P < 0.05). Furthermore, the peak values of TNF-alpha, IL-1ra, IL-6 and IL-10 during the 24 h study period were significantly and/or numerically higher in the Gr- group in comparison to the Gr+ and BCN groups, respectively. It may be concluded that neutropenic patients have increased levels of both pro- and anti-inflammatory cytokines at start of fever, with the highest values recorded during the first hours in Gr- bacteraemias. Prospective studies will show whether monitoring of serum cytokines may be used as an early diagnostic tool before results of blood cultures are available, which may have important therapeutic implications.  相似文献   

3.
Peritoneal adhesions are a leading cause of potential morbidity and mortality. We undertook this prospective study to determine the clinical relevance of interleukin 1 (IL-1) and tumor necrosis factor alpha (TNF-alpha) levels as biological markers for peritoneal adhesion formation in humans. Fifteen patients who had previous colectomies and were undergoing re-exploration for an elective vascular procedure were studied. Blood samples were collected from each patient preoperatively and 30 minutes after the abdominal incision was made. Serum levels of IL-1 and TNF-alpha were determined using enzyme-linked immunosorbent assay kits. Adhesions were graded using an adhesion scale of 0 (none), 1 (mild), 2 (moderate), and 3 (extensive, dense). Preoperative levels of IL-1 and TNF-alpha did not differ significantly among all patients (IL-1 level was 60 +/- 14 pg/mL, and TNF-alpha level was 45 +/- 11 pg/mL; mean +/- standard deviation). Significant correlation was observed between grades of adhesions and early intraoperative levels of IL-1 [101 +/- 36 pg/mL for grade 1 (n = 8) vs 298 +/- 73 pg/mL for grade 3 (n = 6); P < 0.01] and TNF-alpha (88 +/- 23 pg/mL for grade 1 vs 261 +/- 88 mL for grade 3; P < 0.02). We conclude that early elevations of IL-1 and TNF-alpha are reliable biological markers for postoperative adhesions in humans. Studies utilizing cytokines antibodies to these markers may further elucidate the efficacy of this method for prevention of peritoneal adhesions.  相似文献   

4.
OBJECTIVE: To evaluate the role of interleukin 8 (IL-8) in the regulation of neutrophil (PMN) apoptosis in normal plasma and plasma from patients with early, fulminant acute respiratory distress syndrome (ARDS). DESIGN: Experimental study using cultured human PMNs. SETTING: University hospital, level I trauma center. PARTICIPANTS: Plasma was obtained from 6 patients with early, fulminant posttraumatic ARDS (mean Injury Severity Score, 26). All samples were drawn within 24 hours after injury. Plasma was also taken from 13 healthy control subjects. These controls were also used as sources of PMNs. MAIN OUTCOME MEASURES: Effect of early, fulminant ARDS and normal plasma on spontaneous apoptosis, CD16, and CD11-b expression in PMNs in vitro; levels of IL-8 in plasma; correlation of extracellular IL-8 concentration with rate of PMN apoptosis; and effect of IL-8 blockade on PMN apoptosis, CD16, and CD11-b expression in ARDS and normal plasma. RESULTS: Plasma from patients with early, fulminant ARDS inhibited spontaneous PMN apoptosis at 24 hours (35%+/-5% vs 54%+/-5%; P=.01). Neither CD16 nor CD1l-b differed significantly between the 2 groups. The mean plasma level of IL-8 in patients with early, fulminant ARDS was 359+/-161 pg/mL vs 3.0+/-0.4 pg/mL in healthy controls (P<.05). Interleukin 8 inhibited apoptosis in plasma-free medium at low doses (1-50 pg/mL) but had no significant effect at higher doses (100-5000 pg/mL) (P<.05). Interleukin 8 blockade with monoclonal antibody suppressed apoptosis in normal plasma (28%+/-5% with monoclonal antibody vs 51%+/-5% without monoclonal antibody; P=.008) but not in plasma from patients with early, fulminant ARDS (29%+/-5% with monoclonal antibody vs 34%+/-6% without monoclonal antibody; P=.67). It had no effect on CD16 or CD11-b expression in either plasma. CONCLUSIONS: Plasma from patients with early, fulminant ARDS contains soluble factors that inhibit PMN apoptosis in vitro. Low levels of IL-8 inhibit PMN apoptosis in normal plasma. Although plasma levels of IL-8 are markedly elevated in early, fulminant ARDS, IL-8 is not directly responsible for the antiapoptotic effect of plasma from patients with early, fulminant ARDS.  相似文献   

5.
The clinical spectrum of leishmaniasis and control of the infection are influenced by the parasite-host relationship. The role of cellular immune responses of the Th1 type in the protection against disease in experimental and human leishmaniasis is well established. In humans, production of IFN-gamma is associated with the control of infection in children infected by Leishmania chagasi. In visceral leishmaniasis, an impairment in IFN-gamma production and high IL-4 and IL-10 levels (Th2 cytokines) are observed in antigen-stimulated peripheral blood mononuclear cells (PBMC). Moreover, IL-12 restores IFN-gamma production and enhances the cytotoxic response. IL-10 is the cytokine involved in down-regulation of IFN-gamma production, since anti-IL-10 monoclonal antibody (mAb) restores in vitro IFN-gamma production and lymphoproliferative responses, and IL-10 abrogates the effect of IL-12. In cutaneous and mucosal leishmaniasis, high levels of IFN-gamma are found in L. amazonensis-stimulated PBMC. However, low or absent IFN-gamma levels were observed in antigen-stimulated PBMC from 50% of subjects with less than 60 days of disease (24 +/- 26 pg/ml). This response was restored by IL-12 (308 +/- 342 pg/ml) and anti-IL-10 mAb (380 +/- 245 pg/ml) (P < 0.05). Later during the disease, high levels of IFN-gamma and TNF-alpha are produced both in cutaneous and mucosal leishmaniasis. After treatment there is a decrease in TNF-alpha levels (366 +/- 224 pg/ml before treatment vs 142 +/- 107 pg/ml after treatment, P = 0.02). Although production of IFN-gamma and TNF-alpha might be involved in the control of parasite multiplication in the early phases of Leishmania infection, these cytokines might also be involved in the tissue damage seen in tegumentary leishmaniasis.  相似文献   

6.
7.
To assess the relationship between serum cytokines and cytomegalovirus (CMV) reactivation, 75 allogeneic bone marrow transplant patients underwent weekly measurements of interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-alpha, CMV blood cultures, and antigenemia tests. Of the patients, 44 (58.7%) developed CMV infection, and 19 (25.3%) developed clinical CMV disease. The mean maximum levels of all three cytokines were significantly increased in patients with CMV infection compared with levels in those without. Maximum levels of IL-6 were significantly higher in patients with active CMV disease than in those who did not develop CMV disease (281.2+/-85.5 vs. 95.7+/-15.0 pg/mL; P=.034). Levels of IL-8 and TNF-alpha were also elevated in patients who developed active disease. In a multivariate logistic regression model, IL-6 levels were independently associated with CMV disease (odds ratio=1.70 per 100-pg/mL increase in IL-6; P=.009). Cytokines may play an important role in the pathogenesis of CMV after bone marrow transplantation and may be a useful predictor for CMV.  相似文献   

8.
The understanding of immune surveillance and inflammation regulation in cerebral tissue is essential in the therapy of neuroimmunological disorders. We demonstrate here that primary human glial cells were able to produce alpha- and beta-chemokines (IL-8 > growth related protein alpha (GROalpha) > RANTES > microphage inflammatory protein (MIP)-1alpha and MIP-1beta) in parallel to PGs (PGE2 and PGF2alpha) after proinflammatory cytokine stimulation: TNF-alpha + IL-1beta induced all except RANTES, which was induced by TNF-alpha + IFN-gamma. Purified cultures of astrocytes and microglia were also induced by the same combination of cytokines, to produce all these mediators except MIP-1alpha and MIP-1beta, which were produced predominantly by astrocytes. The inhibition of PG production by indomethacin led to a 37-60% increase in RANTES, MIP-1alpha, and MIP-1beta but not in GROalpha and IL-8 secretion. In contrast, inhibition of IL-8 and GRO activities using neutralizing Abs resulted in a specific 6-fold increase in PGE2 but not in PGF2alpha production by stimulated microglial cells and astrocytes, whereas Abs to beta-chemokines had no effect. Thus, the production of PGs in human glial cells down-regulates their beta-chemokine secretion, whereas alpha-chemokine production in these cells controls PG secretion level. These data suggest that under inflammatory conditions, the intraparenchymal production of PGs could control chemotactic gradient of beta-chemokines for an appropriate effector cell recruitment or activation. Conversely, the elevated intracerebral alpha-chemokine levels could reduce PG secretion, preventing the exacerbation of inflammation and neurotoxicity.  相似文献   

9.
Interleukin (IL)-12 is thought to be a key factor for the induction of interferon gamma (IFN-gamma), a cytokine essential for the lethal effects of endotoxin. We report here on the release of the nonfunctional subunit of IL-12, p40, as well as biologically active heterodimeric IL-12, p70, after administration of a lethal (n = 5) or sublethal (n = 8) dose of live Escherichia coli to baboons. Remarkably, on lethal challenge, peak levels of p40 were observed at 3 hours that were about twofold lower than those elicited after sublethal challenge (2,813 +/- 515 pg/mL v 4,972 +/- 732 pg/mL, P < .05). This disparity was also observed, although to a lesser extent, for IL-12 p70 antigen, of which maximum levels of 91 +/- 47 pg/mL and 151 +/- 41 pg/mL were measured 6 hours after a lethal or sublethal dose of E coli, respectively. Circulating p70 antigen correlated with IL-12 biologic activity (r = 0.869; P < .001). When comparing lethal to sublethal conditions, lower peak levels of IL-12 on lethal E coli sharply contrasted with higher levels of other proinflammatory cytokines, such as tumor necrosis factor (TNF)-alpha, IL-1beta, IL-6, and IL-8 observed in these animals. Lower IL-12 concentrations in the lethal group may have resulted in part from the enhanced production of IL-10, a known inhibitor of IL-12 synthesis in vitro, as peak levels of this cytokine 3 hours postchallenge inversely correlated with peak levels of IL-12, in particular p40 (r = -0.802; P < .01). Contrary to what might be expected if IFN-gamma were solely induced by IL-12, lethally challenged baboons generated threefold more IFN-gamma at 6 hours than those receiving a sublethal dose (P < .05). Moreover, higher levels of IFN-gamma were associated with lower p40/p70 ratios, suggesting that, in agreement with observations in vitro, IFN-gamma may have preferentially upregulated the release of p70 over p40. These data show that IL-12 is released in experimental septic shock in nonhuman primates and suggest that IL-10 and IFN-gamma are involved in the regulation of this release. Furthermore, this study indicates that the systemic release of IL-12 might be essential, but is not likely sufficient, to promote lethal production of IFN-gamma in sepsis.  相似文献   

10.
Committed progenitor cells and primitive stem cells mediate early and sustained engraftment, respectively, after lethal irradiation and stem cell transplantation. Peripheral blood stem cells (PBSC) from unstimulated mice are deficient in both cell types. To study techniques to mobilize both progenitor cells and primitive stem cells from the marrow to the blood, we collected peripheral blood from C57BL/6 mice 6 to 7 days after a single dose of cyclophosphamide (CY; 200 mg/kg intraperitoneally), after recombinant human granulocyte colony-stimulating factor (rhG-CSF) (250 micrograms/kg/d twice per day subcutaneously for 4 days), or after CY followed by G-CSF. Significant increases in white blood cell counts (1.6- to 2.7-fold) and circulating day 8 colony-forming unit spleen (CFU-S) (11- to 36-fold) were seen with all three mobilization methods compared with unstimulated control mice. Transplantation of mobilized blood stem cells into lethally irradiated hosts decreased the time to erythroid engraftment. Blood stem cells were analyzed for primitive stem cell content by Rs, an assay for CFU-S self-renewal, and competitive repopulation index (CRI), an assay of long-term repopulating ability. The primitive stem cell content of unstimulated blood was clearly deficient, but was significantly increased following mobilization, approaching normal bone marrow levels. These results were confirmed by an in vitro limiting dilution long-term culture assay that measures the frequency of progenitor cells and primitive stem cells. Mobilization following CY + G-CSF was accompanied by a marked loss of both progenitor cells and primitive stem cells in the marrow. In contrast, following G-CSF alone the progenitor cell and primitive stem cell content of the marrow was unchanged. Stem cell mobilization following CY + G-CSF was not affected by previous exposure of donors to cytosine arabinoside or cyclophosphamide, but was significantly reduced by previous exposure to busulfan. These data show that stem cell content in the blood may reach near-normal marrow levels after mobilization, the mobilization from the marrow to the blood is temporary and reversible, the specific technique used may mobilize different subpopulations of stem cells, and the type of prior chemotherapy may influence the ability to mobilize stem cells into the blood.  相似文献   

11.
Selective accumulation of eosinophils and activated CD4+ cells is now considered a central event in the pathogenesis of asthma, and this process is thought to be mediated by a number of cytokines including tumor necrosis factor-alpha (TNF-alpha), granulocyte-macrophage colony-stimulating factor (GM-CSF), and the Type 2 cytokines interleukin-4 (IL-4) and IL-5. To carry out a detailed time-course analysis of cellular changes in the bronchoalveolar lavage fluid (BAL), peripheral blood (PB), and bone marrow (BM), and of changes in the aforementioned cytokines in BAL and serum, Balb/c mice were sensitized by intraperitoneal injection with ovalbumin (OVA) adsorbed to aluminum hydroxide on two occasions 5 days apart, and were subjected to an OVA aerosol challenge 12 days after the second sensitization. This resulted in an airways inflammatory response characterized by early transient neutrophilia, marked eosinophilia, and, to a lesser extent, lymphocytosis in the BAL. Inflammatory events were first observed 3 h and 24 h after antigen challenge in the lung tissue and BAL, respectively, and lasted for 21 days. In the BM, we detected a 1.5- and 5-fold increase in the total number of cells and eosinophils, respectively, 4 days after the second sensitization. This was followed by a decrease, although BM eosinophilia remained clearly present at the time of antigen challenge. A second eosinopoietic event was observed in the BM shortly after challenge and reached a peak at day 3. BM cellularity returned to normal at day 21 after challenge. Serum OVA-specific IgE was first detected 3 days following the second sensitization (150 ng/ml). IgE levels then decreased but remained at the 75 ng/ml range at the time of the aerosol challenge. During the sensitization period, TNF-alpha (approximately 25 pg/ml), IL-4 (approximately 40 pg/ml), and IL-5 (approximately 250 pg/ml) were detected in serum, but not in the BAL fluid (BALF) and returned to background levels at the time of the antigen challenge. After antigen challenge, TNF-alpha, IL-4, IL-5, and GM-CSF were detected in serum. Peak levels were observed at 3 h (approximately 40 pg/ml), 3 h (approximately 120 pg/ml), 12 h (approximately 350 pg/ml), and 3 h (approximately 10 pg/ml), respectively, and returned to background levels 24 h after challenge. In the BALF, we detected peak levels of TNF-alpha, IL-4, IL-5, and GM-CSF at 6 h (approximately 250 pg/ml), 24 h (approximately 140 pg/ml), 24 h (350 pg/ml), and 3 h (approximately 10 pg/ml), respectively, with a return to background levels 5 days after challenge. No IL-10 could be detected at any time point during sensitization or after challenge in either serum or BAL. We also detected approximately 40 pg/ml of interferon-gamma (IFN-gamma) in the serum of normal untreated mice. Serum IFN-gamma levels fluctuated during sensitization and after challenge, but never exceeded those observed in untreated mice. Thus, the cytokine profile observed in this experimental model of allergic inflammation is characterized by IL-4 and IL-5 dominance, with an apparently minor TNF-alpha and GM-CSF contribution and relatively low or undetectable levels of IFN-gamma and IL-10.  相似文献   

12.
Human NK cells have been shown to produce cytokines (e.g., IFN-gamma and TNF-alpha) and the chemokine macrophage inflammatory protein (MIP)-1alpha following stimulation with the combination of two monokines, IL-15 plus IL-12. The C-C chemokines MIP-1alpha, MIP-1beta, and RANTES have been identified as the major soluble macrophage-tropic HIV-1-suppressive factors produced by CD8+ T cells, which exert their action at the level of viral entry. Here, we demonstrate that monokine-activated NK cells, isolated from both normal and HIV-1+ donors, produce similar amounts of MIP-1alpha, MIP-1beta, and RANTES protein, in vitro. Further, supernatants of monokine-activated NK cells obtained from both normal donors and AIDS patients showed potent (routinely > or = 90%) suppressive activity against HIV-1 replication in vitro, compared with unstimulated control supernatants. NK cell supernatants inhibited both macrophage-tropic HIV-1(NFN-SX) and T cell-tropic HIV-1(NL4-3) replication in vitro, but not dual-tropic HIV-1(89.6). Importantly, the C-C chemokines MIP-1alpha, MIP-1beta, and RANTES were responsible only for a fraction of the HIV-1-suppressive activity exhibited by NK cell supernatants against macrophage-tropic HIV-1. Collectively these data indicate that NK cells from normal and HIV-1+ donors produce C-C chemokines and other unidentified factors that can inhibit both macrophage- and T cell-tropic HIV-1 replication in vitro. Since NK cells can be expanded in patients with HIV-1, AIDS, and AIDS malignancy in vivo, this cell type may have an important role in the in vivo regulation of HIV-1 infection.  相似文献   

13.
Marrow stromal cells of patients treated by autologous bone marrow transplantation (ABMT) for malignancies have been assessed for their ability to secrete granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), stem cell factor (SCF), leukemia inhibitory factor (LIF), interleukin-6 (IL-6), transforming growth factor beta1 (TGFbeta1) and macrophage inflammatory protein-1alpha. (MIP-1alpha). Long-term marrow cultures were established from 10 patients prior to and 3 months after ABMT, from 7 patients 1 yr after ABMT and from 11 controls. Cytokines in culture supernatants of stromal layers (SL) were evaluated by enzyme-linked immunosorbent assay (ELISA). Significant differences between patient groups and controls were apparent in baseline production of GM-CSF, SCF, MIP-1alpha and TGFbeta1. After IL-1beta addition in cultures, G-CSF production was reduced in pretransplant and post-transplant patients compared to controls. The production of TGFbeta1, LIF, IL-6 and more particularly SCF were reduced in post-transplant patients, while elevated levels of GM-CSF and MIP-1alpha were observed in these patients only when the values were corrected for the number of cells growing in the SL. These results indicate a prolonged stromal defect in growth factor production following ABMT for the early-stage acting cytokines IL-6, LIF and SCF as well as for G-CSF, but not for GM-CSF, while the production of the 2 inhibitors shows different pathways.  相似文献   

14.
Macrophage inflammatory protein (MIP)-1alpha and MIP-1beta regulate leukocyte activation and trafficking. To assess the role of MIP-1alpha and MIP-1beta in human inflammation, healthy subjects were studied during experimental endotoxemia with prior administration of ibuprofen, a cyclooxygenase inhibitor, or dimeric p75 tumor necrosis factor (TNF)-alpha receptor, a TNF antagonist; septic patients were also studied. Following endotoxin, blood levels of both MIP-1 molecules rose acutely and fell to baseline by 6 h (P=. 001). While MIP-1 mediates fever in animals independent of cyclooxygenase blockade, in subjects given endotoxin and ibuprofen, MIP-1 levels increased and fever was suppressed. MIP-1 levels were not diminished by inhibiting circulating TNF-alpha in humans. In septic patients, elevated levels of MIP-1alpha and MIP-1beta were detected within 24 h of sepsis and fell in parallel with TNF-alpha and interleukin-6 (P<.01). MIP-1alpha and MIP-1beta increase during acute inflammation but are not associated with fever in endotoxemic humans during cyclooxygenase blockade.  相似文献   

15.
Endogenous production of granulocyte colony-stimulating factor (G-CSF), macrophage CSF (M-CSF), granulocyte-macrophage CSF (GM-CSF), interleukin-3 (IL-3), and interleukin-6 (IL-6) was investigated in 10 children who underwent a total of 12 courses of autologous peripheral blood stem cell transplant (PBSCT) by measuring their serum levels using immunoassay kits. The serum G-CSF level increased immediately following infusion of PBSC graft, peaked between days 3 and 7 posttransplant and then declined by the time the granulocyte count rose. No definitive association was found between the continuous high levels of G-CSF and infective episodes, the number of infused nucleated cells, monocytes, CFU-GM, or the number of days required to achieve greater than 0.5 x 10(9)/L granulocyte, greater than 1.0 x 10(9)/L leukocyte, or greater than 50 x 10(9)/L platelet counts. After PBSCT, IL-6 levels tended to be elevated. No detectable serum level of GM-CSF or IL-3 (< 50 pg/mL) was observed before PBSCT and 4 patients showed a transient increase in the GM-CSF level after PBSCT. No significant change was observed in the post-transplant serum levels of IL-3 or M-CSF. The role of endogenously secreted cytokines in early hematopoietic recovery after PBSCT needs further clarification, but, at present, routine use of exogenous G-CSF therapy is not recommended.  相似文献   

16.
The present study assessed the capacity of eosinophils (EOS) to synthesize the cytokine IL-12. Blood-derived, highly purified human EOS from six atopic patients and two nonatopic individuals were treated in culture with IL-4, IL-5, granulocyte-macrophage CSF, IFN-gamma, TNF-alpha, IL-1alpha, RANTES, and complement 5a, respectively. The expression of both IL-12 protein and mRNAs for the p35 and p40 IL-12 subunits was strongly induced in all donors by the Th2-like cytokines IL-4 and granulocyte-macrophage CSF and was also moderately induced by TNF-alpha and IL-1alpha. IL-5 treatment resulted in IL-12 synthesis in four atopic donors and one nonatopic donor, whereas IFN-gamma induced IL-12 synthesis in only two atopic donors. In contrast, RANTES exclusively induced mRNA for the p40 subunit without detectable protein release, and complement 5a had no effect on IL-12 mRNA or protein expression. EOS-derived IL-12 was biologically active, because supernatants derived from IL-4-treated EOS superinduced the Con A-induced expression of IFN-gamma by a human Th1-like T cell line. This activity was neutralized by anti-IL-12 Abs. In conclusion, EOS secrete biologically active IL-12 after treatment with selected cytokines, which mainly represent the Th2-like type. Consequently, EOS may promote a switch from Th2-like to Th1-like immune responses in atopic and parasitic diseases.  相似文献   

17.
Hemophagocytic lymphohistiocytosis (HLH) is caused by the hyperactivation of T cells and macrophages. The clinical characteristics associated with this disease result from overproduction of Th1 cytokines including interferon-gamma (IFN-gamma), interleukin-2 (IL-2), and tumor necrosis factor-alpha (TNF-alpha). In this study, we analyzed the production of IL-12 and IL-4, which determine Th1 and Th2 response, respectively, and IL-10, which antagonizes Th1 cytokines, in 11 patients with HLH. IL-12 was detected in plasma in all patients (mean peak value, 30.0 +/- 5.0 pg/mL), while IFN-gamma was massively produced in nine patients (mean peak value, 79.2 +/- 112.0 U/mL). IL-4 was not detected in any of the patients. Plasma IL-10 levels were elevated in all patients (mean peak value, 2,698.0 +/- 3,535.0 pg/mL). There was a positive correlation between the levels of IFN-gamma and IL-10 (P < .01). The plasma concentrations of these cytokines were initially high, before decreasing after the acute phase. However, the decrease in IL-10 levels was slower than that of IFN-gamma. Although the concentration of IL-12 was high at the acute phase, in some patients, a peak in the level was delayed until the chronic phase. Thus, in HLH, production of cytokines that promote development of Th1 cells appears to be predominant over that for Th2 cell development. Overproduction of IL-10 was also observed indicating that a mechanism suppressing hyperactivation of Th1 cells and monocytes/macrophages functions in patients with this disease.  相似文献   

18.
This study examined the early response of pro-inflammatory and regulatory cytokines in the mouse brain following triethyltin (TET)-induced myelin injury characterized by edematous vacuolation. Following an acute intraperitoneal injection of triethyltin (TET) sulfate (3 mg/kg) to 17-day old CD1 mice, significant increases in brain stem TNF-alpha and IL-1alpha mRNA levels occurred at 6 and 24 h, respectively with elevations in TGF-beta1 and MIP-1alpha at 1 h. In the cortex, responses were limited to elevations at 6 h in TNF-alpha, TGF-beta1 and MIP-1alpha. These data suggest that a chemokine/cytokine response can occur with minimal alterations to the integrity of the myelin sheath and may contribute to the initial signaling mechanisms associated with demyelinating disorders.  相似文献   

19.
We have developed a direct immunocytochemical technique to identify cytokine and chemokine production in epidermal Langerhans cells (LC) and in vitro derived CD14-, CD1a+, CD83+, CD40+ dendritic cells (DC) at the single cell level. Formaldehyde fixation combined with saponin permeabilization preserved cellular morphology and generated a characteristic juxtanuclear staining signal due to the accumulation of cytokine to the Golgi organelle. This approach was used for the assessment of TNF-alpha, IL-6, IL-8, IL-10, IL-12, GM-CSF, MIP-1alpha, MIP-1beta and RANTES producing cells. In contrast, a diffuse cytoplasmic staining was evident for IL-1ra, IL-1alpha and IL-1beta production. IL-1ra and IL-1alpha were expressed in 10-25% of unstimulated cultured cells, while all the other cytokines were undetectable. IL-1ra, IL-1alpha and IL-1beta were also the dominating cytokines, expressed in up to 85% of the DC, after 3 h of LPS stimulation. A significantly lower number of cells (0-5%) synthesized TNF-alpha, IL-6, IL-10, IL-12 and GM-CSF. The incidence of chemokine producing cells (IL-8, RANTES, MIP-1alpha, MIP-1beta) peaked 10 h after LPS stimulation in up to 60% of the DC. Both immature CD83- and mature CD83+ DC as well as LC had a similar cytokine production pattern. Thus, in comparison to monocytes, LPS stimulation of DC generated a lower incidence of TNF-alpha, IL-6, IL-10 and IL-12 producing cells while IL-1 was expressed in a comparable number of cells.  相似文献   

20.
The release of chemokines such as macrophage-inflammatory protein-1 alpha (MIP-1 alpha) from activated macrophages is a crucial step in cell recruitment necessary for establishing local inflammatory responses. To ascertain the importance of the L-arginine/nitric oxide (NO) pathway in LPS-induced MIP-1 alpha release, we stimulated human adherent PBMC with LPS in the presence of the NO synthase inhibitor N(G)-monomethyl-L-arginine (L-NMMA). L-NMMA decreased LPS-induced MIP-1 alpha protein release (45.5% inhibition) and steady state levels of mRNA (48% inhibition) in adherent PBMC. The concentration of L-NMMA for inhibition of MIP-1 alpha release was dependent on the concentration of L-arginine in the cell culture medium, emphasizing the L-arginine-related action of the drug. Most of the MIP-1 alpha release was attributed to the activity of IL-1 and TNF, since coincubation of LPS-stimulated PBMC with IL-1R antagonist and TNF-binding protein abrogated LPS-induced MIP-1 alpha release (by 76.8%). Analysis of cytokine secretion revealed that, in addition to MIP-1 alpha, L-NMMA inhibited the release of mature IL-1 beta (by 70%) and TNF-alpha (by 53%). In contrast, release of macrophage chemoattractant protein-1 was unaffected; IL-10 was augmented (123.4%) by L-NMMA. In the presence of exogenous NO provided by NO donors, LPS-induced MIP-1 alpha release was enhanced. We concluded that endogenous NO acts as a mediator of inflammation. Since IL-10 is a potent anti-inflammatory cytokine, these data also suggest that L-NMMA acts as an anti-inflammatory agent by specifically altering the balance of pro- and anti-inflammatory cytokines released from LPS-stimulated human PBMC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号