首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
湖南某伟晶岩型锂辉石矿Li2O品位为1.35%,主要脉石矿物为石英和长石,次为绿泥石、高岭石等易泥化矿物。传统的“三碱两皂”法的锂辉石浮选工艺存在浮选药剂用量大、浮选时间长、浮选指标不佳、选矿回水难以直接回用的缺点。为实现该矿石中锂的高效回收利用,基于原矿性质,进行了选矿试验研究,最终确定采用脱泥—磁选—浮选工艺流程。在磨矿细度为-0.074 mm占66.55%的条件下,选取ZT为中性调整剂、ZB为组合捕收剂,浮选阶段经“1粗2精2扫”,最终获得Li2O品位6.05%、Li2O回收率79.77%、Fe2O3含量0.83%的锂精矿,有效实现了锂辉石中锂的高效回收,产品达到化工级-1产品的品质标准。  相似文献   

2.
锂辉石矿发生蚀变以后,选别处理过程中存在泥化严重、可浮性差的难题。采用传统的闭路浮选流程处理Li2O品位为1.05%的此类矿石,难以获得较为理想的指标,锂精矿Li2O品位仅为3.12%,Li2O回收率为43.61%。为此,本文介绍一种全开路锂辉石矿选别工艺,通过改变中矿走向,获得Li2O品位3.83%,Li2O回收率48.19%的锂精矿。之后锂精矿经反浮选除杂,最终Li2O品位可以达到4.58%。  相似文献   

3.
为合理开发某锂辉石矿产资源,有效回收该矿产资源中的锂矿物,对其进行了选矿工艺研究.结果表明,在酸性介质中,以十二胺作捕收剂预先浮脉石,浮选尾矿采用碳酸钠-氢氧化钠-氯化钙作组合调整剂、氧化石蜡皂+油酸作混合捕收剂浮选锂矿物,在原矿含Li2O 1.38%的条件下,可获得含Li2O 6.15%、回收率为75.49%的锂辉石精矿.  相似文献   

4.
我国锂资源消耗量逐年攀升,而国内矿石型锂资源品位较低,卤水型锂资源开发难度较大,锂精矿产品难以满足国内生产需要。国外某锂辉石跳汰分选中矿作为进口锂精矿的附加产品购进,为探究其选矿 工艺,以矿石性质研究结果为基础,采用重色浮联合选矿工艺进行了选矿试验研究。结果表明:①试样中Li2O含量为3.60%,主要有价矿物为锂辉石,主要脉石矿物为长石、石英和云母。锂辉石粒度大部分在1 mm以上 ,主要脉石和连生体粒度为2 mm以上;②+0.5 mm粗粒原料在重液密度为2.85 g/cm3时,可以获得Li2O含量大于5.5%的锂辉石精矿,精矿作业回收率较高,经计算机模拟所得两段连续重介质旋流器分选预测结果与之契 合度高,工业推广可行性高;③+0.5 mm粗粒原料采用筛分分级—重悬浮液分选流程,在介质密度为2.70 g/cm3的条件下,可以抛掉产率为21.76%,Li2O品位为0.18%的重液尾矿,Li2O在重液尾矿中的金属量损失仅为 1.09%;④重液精矿经色选机分选,精矿Li2O品位由5.73%提高至6.18%,精矿质量提高一个等级,Li2O作业回收率高达89.23%;⑤色选尾矿、重液中矿和-0.5 mm矿石作为混合中矿,其Li2O品位高达2%~3.57%,以自主 研发的EL为锂辉石浮选捕收剂,经“1粗2精2扫”,最终获得Li2O品位6.53%、Li2O作业回收率91.51%的浮选精矿。全流程试验分选指标优异,有效降低了磨矿成本,具有一定工程推广应用价值。  相似文献   

5.
通过对非洲某含透锂长石的花岗伟晶岩型锂辉石矿进行工艺矿物学研究,发现该锂矿中的锂主要以锂辉石和透锂长石的形式赋存。通过重介质选矿试验优先分选透锂长石,可以得到Li2O品位为4.22%、回收率为18.14%的透锂长石精矿,对透锂长石选矿尾矿进行磨矿浮选锂辉石试验,采用自主研发的改性螯合捕收剂TQ-3,在低碱性环境下(pH=8.5~9)浮选,得到Li2O品位为6.09%、回收率为65.27%的锂辉石精矿,锂的综合回收率达到了83.41%。试验获得两种合格锂精矿产品,实现了锂资源的综合回收利用。  相似文献   

6.
内蒙某钽铌尾矿含有大量的锂云母矿物,尾矿中的脉石矿物主要为长石、石英类硅酸盐矿物,矿石中的细泥(含原生细泥和磨矿产生的次生细泥)矿物制约锂云母浮选精矿品质的提高。对含Li2O 1.02%的钽铌尾矿,采用尾矿脱泥-锂云母浮选(一次粗选、一次选扫)的工艺流程,锂云母浮选采用碳酸钠作调整剂,椰油胺+MC-2作组合捕收剂,获得锂精矿含Li2O 5.02%,达到优质锂盐级标准;锂精矿对钽铌尾矿回收率为74.82%,有效实现了尾矿中锂资源的综合回收利用。  相似文献   

7.
为实现江西宜春花岗伟晶岩型锂辉石矿中锂、钽及长石的综合回收, 开展了选矿综合回收试验研究。研究结果表明, 该锂辉石矿石英、长石含量高, 采用高选择性药剂ZH与氧化石蜡皂组合作为锂辉石捕收剂, 可降低细泥在锂辉石表面的罩盖影响, 优化矿浆流体环境; 在原矿含Li2O为1.51%、Ta2O5为0.022%的条件下, 以氧化石蜡皂+ZH组合捕收剂浮选回收锂辉石, 采用细泥摇床重选工艺回收浮选尾矿中的钽矿物, 重选尾矿采用"弱磁选—强磁选"工艺除铁后作为长石精矿, 获得了含Li2O 5.62%、回收率为74.65%的锂辉石精矿和Ta2O5品位为18.78%、回收率为40.21%的钽精矿, 以及产率为49.16%、含Na2O 2.45%、K2O 4.60%、TFe 0.15%、白度为62.9%的长石精矿。该工艺流程选矿试验指标良好, 实现了硬岩型锂辉石矿中锂、钽和长石的综合回收。   相似文献   

8.
澳大利亚某进口锂辉石矿含有较多的矿泥,对浮选作业产生不利影响,试验采用水力沉降法、浮选法等不同方法对锂辉石矿进行预先脱泥,考察了不同方法的脱泥效果及对后续锂辉石浮选的影响。研究发现以十二烷基硫酸钠作为浮选药剂对锂辉石矿进行浮选脱泥取得了最佳的脱泥效果,脱除的矿泥量大、含锂品位低、矿泥中锂的损失小,脱泥后再浮选锂辉石,获得的锂辉石粗精矿品位有了很大程度的提高。预先脱泥后的锂辉石矿经过一次粗选两次精选三次扫选的浮选流程,可获得良好的选矿指标。闭路试验表明,该进口锂辉石矿原矿Li_2O含量为1.42%,经预先脱泥—浮选锂辉石选别流程处理后,获得的锂辉石精矿Li_2O品位为5.83%,Li_2O回收率为78.54%。  相似文献   

9.
本文的研究对象为四川某锂辉石矿,矿石属伟晶岩型低品位锂辉石矿,矿石中Li2O含量为1.36%。主要矿物组成简单,为锂辉石、石英、长石等,粒度粗大。主回收元素锂主要分布于锂辉石中,锂辉石中锂的分布率为96.6%,锂辉石本身含铁0.15%。加之部分锂辉石发育的解理缝、裂缝中被铁锰质充填污染,易对锂辉石品级造成影响。共伴生的锡、铌、钽主要以锡石、铌铁矿、重钽铁矿存在,嵌布于锂辉石、石英、长石粒间,粒度细小,与主要矿物粒度差异巨大,是否综合回收应从经济效益角度考虑。  相似文献   

10.
四川壤塘锂多金属矿石选矿试验研究   总被引:1,自引:0,他引:1  
四川壤塘锂多金属矿石中主要有用矿物为锂辉石,具有综合回收价值的矿物为钽铁矿、铌铁矿和锡石。根据钽铌铁矿及锡石与锂辉石和脉石矿物的密度差异、钽铌铁矿与锡石的磁性差异以及锂辉石与脉石矿物的可浮性差异,采用分级重选—磁选—浮选联合工艺流程进行选矿试验,获得了锂精矿、钽铌精矿和锡精矿,使矿石中的有价元素得到了较好的综合回收。锂精矿Li2O品位为5.53%,Li2O回收率为72.68%;钽铌精矿Ta2O5和Nb2O5品位为17.00%和32.55%,Ta2O5和Nb2O5回收率为59.38%和66.05%;锡精矿锡品位为52.16%,锡回收率为80.00%。  相似文献   

11.
某锂多金属矿综合回收试验研究   总被引:1,自引:0,他引:1  
对某含锂多金属矿进行了选矿试验研究。针对该矿石的性质,采用"重选—磁选—浮选"联合流程,获得了品位为(Ta+Nb)2O556.06%、Ta2O5回收率66.16%、Nb2O5回收率68.95%)的钽铌精矿;品位44.26%、回收率为83.27%的锡精矿和Li2O品位5.08%、对原矿回收率为72.68%的锂精矿。对影响锂辉石浮选的磨矿细度、调整剂、捕收剂及用量等因素进行了探讨,并获得最佳条件工艺。试验结果表明,该工艺合理可行,选矿指标较为理想,对锂辉石回收的同时回收了铌钽、锡等金属矿物,实现了资源的综合利用。  相似文献   

12.
某锂多金属矿含有锂辉石、钽铌锰矿、云母和长石等资源,采用常规重磁浮流程长、工艺复杂、回收率低。本研究采用高效选择性耐低温捕收剂ML和高效捕收剂MT,开发了一种锂钽铌短流程同步浮选与分离工艺,并回收尾矿中的石英长石。在原矿品位Li2O 1.72%、Ta2O5 0.025%的条件下,获得锂精矿Li2O品位6.55%,回收率71.04%;高品位钽精矿Ta2O5品位18.03%,回收率33.40%;低品位钽精矿Ta2O5品位3.21%,回收率9.00%;以及含Li2O 2.07%的云母精矿和高白度石英长石产品。实现了该锂多金属矿的综合回收。  相似文献   

13.
针对川西某伟晶岩锂辉石矿原矿性质复杂的特点,对其进行了强化浮选分离及综合利用试验研究。通过三种流程方案对比,确定最优的选别工艺"阶段磨矿-阶段选别-组合捕收剂强化浮选分离技术",可分别获得产率为5.26%的云母精矿;Li_2O品位高达6.20%,回收率为87.34%的锂辉石精矿。通过对浮锂尾矿进一步回收长石的选矿工艺流程试验,可以获得K_2O+Na_2O含量为11.33%,作业回收率为85.77%,全流程K_2O+Na_2O回收率达到50.57%,Fe_2O_3含量只有0.21%的长石精矿,在一定程度上实现了此类难选伟晶岩型锂辉石矿的综合利用。  相似文献   

14.
西澳某锂辉石矿石Li2O品位为1.22%,有用矿物为锂辉石和锂云母,脉石矿物主要为石英、长石等。该锂辉石矿矿石结构以细粒结构为主,偶见粗粒结构、包晶结构;构造为块状构造和浸染状构造。锂辉石是最主要的含锂矿物,呈他形粒状晶体产出,晶面伴有纵纹多为银白色和褐色,锂辉石和石英、长石等脉石矿物紧密共生,相互交错,锂辉石最大粒度为0.5 mm×0.4 mm,最小为0.03 mm×0.04 mm。矿石在磨矿细度为-0.105 mm占70%的情况下,沉降脱泥后以Ty+油酸钠为组合捕收剂,Na_2CO_3和NaOH为调整剂,CaCl_2为锂辉石的活化剂,采用1粗2精2扫、中矿顺序返回流程处理矿石,可获得Li_2O品位为5.52%、回收率达70.90%的锂精矿,较好地实现了锂辉石的回收。  相似文献   

15.
某低品位锂辉石品位1.46%,主要矿物为锂辉石和腐锂辉石,矿石性质复杂,分选难度大.采用锂辉石直接浮选工艺,以NaOH作pH调整剂,Na2CO3作脉石矿物分散剂,CaCl2作活化剂,731+油酸作混合捕收剂浮选该锂辉石矿物.实验室小型闭路试验获得锂辉石精矿品位5.68%,Li2O回收率为76.72%.与现场“预先脱泥—尾矿浮锂辉石”工艺相比,新工艺不仅提高锂辉石精矿品位,而且显著提高锂的回收率.  相似文献   

16.
锂是一种稀缺元素,具有许多优良特性。目前,从自然界锂辉石矿物中提锂是获取锂原料的主要途径。本试验针对某锂辉石矿物工艺特性特点,进行了选矿试验研究。针对该锂辉石矿的矿石性质,采用碱法不脱泥的浮选工艺进行了锂辉石与脉石的分离。探索了磨矿细度、调整剂和活化剂对锂辉石浮选的影响。通过大量试验,结果表明:调整剂碳酸钠+氢氧化钠(质量比2∶3)2000 g/t及捕收剂氧化石蜡皂+肟酸(质量比3∶2)1200 g/t的条件下可获得Li2O品位6.21%,回收率76.30%的较好的锂精矿指标,为有效提供锂资料回收提供技术依据。  相似文献   

17.
针对江西某低品位锂辉石矿矿泥含量高、现场浮选指标差等问题,进行了选矿试验研究。结果表明:将450 g/t碳酸钠+300 g/t氢氧化钠加入磨机中,矿石磨细至-0.076 mm占70%,脱去-0.15 mm粒级矿泥,以碳酸钠、氢氧化钠、氯化钙作联合调整剂、改性油酸作捕收剂,经1粗3精1扫闭路浮选,可获得Li2O品位为4.45%、回收率为74.17%的锂辉石精矿,精矿Li2O品位较现场工艺提高了0.39个百分点,回收率提高了12.59个百分点;锂辉石浮选尾矿经弱磁选-高梯度强磁选除铁,获得了Fe2O3含量为0.18%的长石精矿。  相似文献   

18.
本文针对四川某低品位锂辉石矿中锂辉石与石英、钠长石及微斜长石等脉石矿物的分离技术问题进行了选矿试验研究。在原矿磨矿细度-0.074mm 74.1%时采用一粗一扫三精浮选流程,获得了Li2O品位5.65%、Li2O回收率81.02%的锂辉石精矿。研究结果表明,所采用的浮选工艺简单、易操作,药剂制度合理,对该锂辉石矿具有较好的适应性。  相似文献   

19.
闫克勤 《金属矿山》2018,47(11):95-97
贵州某锂辉石矿石Li2O含量为1.21%。主要脉石矿物有石英、长石、磷灰石、磁铁矿、高岭石等。为确定锂辉石的回收工艺,进行了选矿试验。矿石采用浮选工艺富集锂辉石、磁选工艺剔除混入锂辉石精矿中的磁铁矿。结果表明,在磨矿细度为-0.074 mm占83.2%的情况下,以油酸钠+水杨羟肟酸(质量配合比为1∶1)为捕收剂,总用量为1 200 g/t,以氯化铁为活化剂,用量为100 g/t,采用1粗1扫3精、中矿顺序返回浮选流程富集锂辉石,1次弱磁选(磁场强度为198.94 k A/m)流程脱铁,最终获得Li_2O品位为6.16%、含铁0.45%、Li_2O回收率为85.43%的锂辉石精矿。  相似文献   

20.
根据矿石性质研究某锂辉石矿产资源高效综合利用的工艺流程。采用硫酸作pH调整剂,十二胺作捕收剂优先浮选云母,以NaOH作调整剂、CaCl2作活化剂,油酸作捕收剂浮选锂辉石矿物,浮选粗精矿经再磨后以Na2CO3为调整剂精选,获得含Li2O 6.04%、回收率76.77%的锂辉石精矿和纯度较高的云母精矿。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号