首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used daily MODerate resolution Imaging Spectroradiometer (MODIS) imagery obtained over a five-year period to analyze the seasonal and inter-annual variability of the fraction of absorbed photosynthetically active radiation (FAPAR) and photosynthetic light use efficiency (LUE) for the Southern Old Aspen (SOA) flux tower site located near the southern limit of the boreal forest in Saskatchewan, Canada. To obtain the spectral characteristics of a standardized land area to compare with tower measurements, we scaled up the nominal 500 m MODIS products to a 2.5 km × 2.5 km area (5 × 5 MODIS 500 m grid cells). We then used the scaled-up MODIS products in a coupled canopy-leaf radiative transfer model, PROSAIL-2, to estimate the fraction of absorbed photosynthetically active radiation (APAR) by the part of the canopy dominated by chlorophyll (FAPARchl) versus that by the whole canopy (FAPARcanopy). Using the additional information provided by flux tower-based measurements of gross ecosystem production (GEP) and incident PAR, we determined 90-minute averages for APAR and LUE (slope of GEP:APAR) for both the physiologically active foliage (APARchl, LUEchl) and for the entire canopy (APARcanopy, LUEcanopy).The flux tower measurements of GEP were strongly related to the MODIS-derived estimates of APARchl (r2 = 0.78) but only weakly related to APARcanopy (r2 = 0.33). Gross LUE between 2001 and 2005 for LUEchl was 0.0241 µmol C µmol− 1 PPFD whereas LUEcanopy was 36% lower. Time series of the 5-year normalized difference vegetation index (NDVI) were used to estimate the average length of the core growing season as days of year 152-259. Inter-annual variability in the core growing season LUEchl (µmol C µmol− 1 PPFD) ranged from 0.0225 in 2003 to 0.0310 in 2004. The five-year time series of LUEchl corresponded well with both the seasonal phase and amplitude of LUE from the tower measurements but this was not the case for LUEcanopy. We conclude that LUEchl derived from MODIS observations could provide a more physiologically realistic parameter than the more commonly used LUEcanopy as an input to large-scale photosynthesis models.  相似文献   

2.
The MODIS (Moderate Resolution Imaging Spectroradiometer) primary productivity products are evaluated against observed Above-ground Net Primary Production (AGNPP) in the semi-arid Senegal 2001. MODIS net primary productivity (NPP) modelling is a light use efficiency (LUE) based approach incorporating constraints on vegetation productivity arising from simulated radiation, water demand and temperature data from NASA's Data Assimilation Office (DAO). Annually integrated MODIS PSN (MOD17A2 net photosynthesis, Collection 4) explains more of the observed biomass variation (r2 = 0.77) than MODIS fAPAR (fraction Absorbed Photosynthetically Active Radiation, Collection 4) (r2 = 0.72), indicating the effect of including the canopy stress scalar (εs) based on DAO data combined with modelled maintenance respiration costs (of leaf and fine roots). Annual MODIS NPP (MOD17A3, Collection 4 (C4) and Collection 4.5 (C4.5)) including growth respiration and live wood maintenance respiration costs and modified DAO input (C4.5) however increases the residual unexplained observed AGNPP variance (C4 NPP; r2 = 0.49) (C4.5 NPP; r2 = 0.37). The overall quality of the annual NPP MODIS C4 and C4.5 products are moderate for the semi-arid Senegal because of the annual respiration cost modelling and a change in C4.5 biome-specific parameters stored in a Biome Properties Look-Up Table (BPLUT) is the main contributor to the observed discrepancy between C4 and C4.5 NPP. The dynamic range of the values of all MOD17 products was too low when compared to observed AGNPP. An estimate of canopy water stress (SIWSI; Shortwave Infrared Water Stress Index) derived from MODIS channels 2 and 6 and photosynthetically active radiation (PAR) irradiance derived from geostationary METEOSAT data were tested for primary production modelling using a stepwise linear regression analysis. PAR irradiance was combined with MODIS fAPAR into APAR (Absorbed Photosynthetically Active Radiation) explaining 79% of the observed AGNPP variation. Introducing SIWSI significantly increased the explained variance of observed AGNPP (r2 = 0.89). MODIS-derived percentage tree cover was tested as a predictor based on the hypothesis that tree cover provides information on differences in respiratory costs between trees and grasses thereby accounting for variations in the LUE conversion efficiency ε. No significant reduction in residual unexplained AGNPP variance was found. Earth observation based derivation of PAR and canopy water stress from SIWSI suggest potential improvements to primary production models in semi-arid biomes that can be implemented in general NPP modelling LUE methodology.  相似文献   

3.
Time series of satellite sensor-derived data can be used in the light use efficiency (LUE) model for gross primary productivity (GPP). The LUE model and a closely related linear regression model were studied at an ombrotrophic peatland in southern Sweden. Eddy covariance and chamber GPP, incoming and reflected photosynthetic photon flux density (PPFD), field-measured spectral reflectance, and data from the Moderate Resolution Imaging Spectroradiometer (MODIS) were used in this study. The chamber and spectral reflectance measurements were made on four experimental treatments: unfertilized control (Ctrl), nitrogen fertilized (N), phosphorus fertilized (P), and nitrogen plus phosphorus fertilized (NP). For Ctrl, a strong linear relationship was found between GPP and the photosynthetically active radiation absorbed by vegetation (APAR) (R2 = 0.90). The slope coefficient (εs, where s stands for “slope”) for the linear relationship between seasonal time series of GPP and the product of the normalized difference vegetation index (NDVI) and PPFD was used as a proxy for the light use efficiency factor (ε). There were differences in εs depending on the treatments with a significant effect for N compared to Ctrl (ANOVA: p = 0.042, Tukey's: p ≤ 0.05). Also, εs was linearly related to the cover degree of vascular plants (R2 = 0.66). As a sensitivity test, the regression coefficients (εs and intercept) for each treatment were used to model time series of 16-day GPP from the product of MODIS NDVI and PPFD. Seasonal averages of GPP were calculated for 2005, 2006, and 2007, which resulted in up to 19% higher average GPP for the fertilization treatments compared to Ctrl. The main conclusion is that the LUE model and the regression model can be applied in peatlands but also that temporal and spatial changes in ε or the regression coefficients should be considered.  相似文献   

4.
Gross primary productivity (GPP) changes occur at different time-scales and due to various mechanisms such as variations in leaf area, chlorophyll content, rubisco activity, and stomatal conductance. Diagnostic estimates of primary productivity are obviously error prone when these changes are not accounted for. Additional complications arise when factors inuencing a biome-specific maximum light use efficiency (LUE) must be estimated over a large area. In these cases a direct estimation of ecosystem LUE could reduce uncertainty of GPP estimates. Here, we analyse whether a MODIS-based photochemical reectance index (PRI) is a useful proxy for the light use efficiency of a Mediterranean Quercus ilex forest. As the originally proposed reference band for PRI is not available on MODIS, we tested the reference bands 1 (620-670 nm), 4 (545-565 nm), 12 (546-556 nm), 13 (662-672 nm), and 14 (673-683 nm) using different atmospheric correction algorithms. We repeated the analysis with different temporal resolutions of LUE (half-hourly to daily). The strongest correlation between LUE and PRI was found when considering only a narrow range of viewing angles at a time (especially 0-10° and 30-40°). We found that the MODIS-based PRI was able to track ecosystem LUE even during severe summer time water limitation. For this Mediterranean-type ecosystem we could show that a GPP estimation based on PRI is a huge improvement compared to the MODIS GPP algorithm. In this study, MODIS spectral band 1 turned out to be the most suitable reference band for PRI, followed by the narrow red bands 13 and 14. As to date no universally applicable reference band was identified in MODIS-based PRI studies, we advocate thorough testing for the optimal band combination in future studies.  相似文献   

5.
Quantification of the magnitude of net terrestrial carbon (C) uptake, and how it varies inter-annually, is an important question with future potential sequestration influenced by both increased atmospheric CO2 and changing climate. However the assessment of differences in measured and modeled C accumulation is a challenging task due to the significant fine scale variation occurring in terrestrial productivity due to soil, climate and vegetation characteristics as well as difficulties in measuring carbon accumulation over large spatial areas. The Moderate Resolution Imaging Spectroradiometer (MODIS) offers a means of monitoring gross primary production (GPP), both spatially and temporally, routinely from space. However it is critical to compare and contrast the temporal dynamics of the C and water fluxes with those measured from ground-based networks, or estimated using physiological models. In this paper, using a number of approaches, our objective is to determine if any systematic biases exists in either the MODIS, or the modeled estimates of fluxes, relative to the measurements made over an evergreen, needleleaf temperate rainforest on Vancouver Island, Canada. Results indicate that 8-day GPP as predicted with a simple physiological model (3PGS), forced using local meteorology and canopy characteristics, matched measured fluxes very well (r2 = 0.86, p < 0.001) with no significant difference between eddy covariance (EC) and modeled GPP (p < 0.001). In addition, modeled water supply closely matched measured relative available soil water content at the site. Using canopy characteristics from the MODIS fraction of photosynthetically active radiation (fPAR) algorithm, slightly reduced the correspondence of the predictions due to a large number of unsuccessful retrievals (83%) due to sun angle, snow and cloud. Predictions of GPP based on the MODIS GPP algorithm, forced using local meteorology and canopy characteristics, were also highly correlated with EC measurements (r2 = 0.89, p < 0.001) however these estimates were biased under predicting GPP. Estimates of GPP based on the most recent MODIS reprocessing (collection 4.5) remained highly correlated (r2 = 0.88, p < 0.001) yet were also the most biased with the estimates being 30% less than the EC-measured GPP. Most of the variance in GPP at the site was explained by the absorbed photosynthetically active radiation. We also compared the nighttime respiration as measured over 2 years at the site with the minimum 8-day MODIS land surface temperature and found a significant relationship (r2 = 0.57), similar to other studies.  相似文献   

6.
Estimation of photosynthetic light use efficiency (ε) from satellite observations is an important component of climate change research. The photochemical reflectance index, a narrow waveband index based on the reflectance at 531 and 570 nm, allows sampling of the photosynthetic activity of leaves; upscaling of these measurements to landscape and global scales, however, remains challenging. Only a few studies have used spaceborne observations of PRI so far, and research has largely focused on the MODIS sensor. Its daily global coverage and the capacity to detect a narrow reflectance band at 531 nm make it the best available choice for sensing ε from space. Previous results however, have identified a number of key issues with MODIS-based observations of PRI. First, the differences between the footprint of eddy covariance (EC) measurements and the MODIS footprint, which is determined by the sensor's observation geometry make a direct comparison between both data sources challenging and second, the PRI reflectance bands are affected by atmospheric scattering effects confounding the existing physiological signal. In this study we introduce a new approach for upscaling EC based ε measurements to MODIS. First, EC-measured ε values were “translated” into a tower-level optical PRI signal using AMSPEC, an automated multi-angular, tower-based spectroradiometer instrument. AMSPEC enabled us to adjust tower-measured PRI values to the individual viewing geometry of each MODIS overpass. Second, MODIS data were atmospherically corrected using a Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, which uses a time series approach and an image-based rather than pixel-based processing for simultaneous retrievals of atmospheric aerosol and surface bidirectional reflectance (BRDF). Using this approach, we found a strong relationship between tower-based and spaceborne reflectance measurements (r2 = 0.74, p < 0.01) throughout the vegetation period of 2006. Swath (non-gridded) observations yielded stronger correlations than gridded data (r2 = 0.58, p < 0.01) both of which included forward and backscatter observations. Spaceborne PRI values were strongly related to canopy shadow fractions and varied with different levels of ε. We conclude that MAIAC-corrected MODIS observations were able to track the site-level physiological changes from space throughout the observation period.  相似文献   

7.
Eddy covariance (EC) measurements have greatly advanced our knowledge of carbon exchange in terrestrial ecosystems. However, appropriate techniques are required to upscale these spatially discrete findings globally. Satellite remote sensing provides unique opportunities in this respect, but remote sensing of the photosynthetic light-use efficiency (ε), one of the key components of Gross Primary Production, is challenging. Some progress has been made in recent years using the photochemical reflectance index, a narrow waveband index centered at 531 and 570 nm. The high sensitivity of this index to various extraneous effects such as canopy structure, and the view observer geometry has so far prevented its use at landscape and global scales. One critical aspect of upscaling PRI is the development of generic algorithms to account for structural differences in vegetation. Building on previous work, this study compares the differences in the PRI: ? relationship between a coastal Douglas-fir forest located on Vancouver Island, British Columbia, and a mature Aspen stand located in central Saskatchewan, Canada. Using continuous, tower-based observations acquired from an automated multi-angular spectro-radiometer (AMSPEC II) installed at each site, we demonstrate that PRI can be used to measure ? throughout the vegetation season at the DF-49 stand (r2 = 0.91, p < 0.00) as well as the deciduous site (r2 = 0.88, p < 0.00). It is further shown that this PRI signal can be also observed from space at both sites using daily observations from the Moderate Resolution Imaging Spectro-radiometer (MODIS) and a multi-angular implementation of atmospheric correction (MAIAC) (r2 = 0.54 DF-49; r2 = 0.63 SOA; p < 0.00). By implementing a simple hillshade model derived from airborne light detection and ranging (LiDAR) to approximate canopy shadow fractions (αs), it is further demonstrated that the differences observed in the relationship between PRI and ε at DF-49 and SOA can be attributed largely to differences in αs. The findings of this study suggest that algorithms used to separate physiological from extraneous effects in PRI reflectance may be more broadly applicable and portable across these two climatically and structurally different biome types, when the differences in canopy structure are known.  相似文献   

8.
To estimate the gross CO2 flux (FCO2) of deciduous coniferous forest from canopy spectral reflectance, we introduced spectral vegetation indices (VIs) into a light use efficiency (LUE) model of mature Japanese larch (Larix kaempferi) forest. We measured the eddy covariance CO2 flux and spectral reflectance of larch canopy at half-hourly intervals during one growing season, and investigated the relationships between the parameters of the LUE model (FAPAR, ?) and 3 types of VIs (NDVI, PRI, EVI) in both clear sky and cloudy conditions.FAPAR (fraction of absorbed photosynthetically active radiation) had a positive linear relationship with both NDVI (normalized difference vegetation index) and EVI (enhanced vegetation index), and the sky condition had little effect on the relationships. The relative RMSE (root mean square error) of the APAR (absorbed photosynthetically active radiation) based on the incoming PAR and estimated FAPAR from a linear function of NDVI was less than 10.5%, irrespective of sky condition.Half-hourly values of ? (conversion efficiency of absorbed energy) showed both seasonal variation related to leaf phenology and short-term variation related to light intensity due to varied sun position and sky condition. Both EVI and PRI (photochemical reflectance index) were significantly correlated with ?. EVI showed a positive linear relationship with ? as a result of their similar seasonal variation. However, since EVI did not detect short-term variation of ?, their relationship differed among sky conditions. On the other hand, although PRI could trace the short-term variation of ? in green needles, the relationship became non-linear due to drastic reduction of PRI in the senescent needles.EVI/(PRI/PRImin), a combined index based on a 6-day moving minimum value of PRI (PRImin), showed a linear relationship with half-hourly values of ? throughout the seasons irrespective of sky condition. This index allow us to estimate ? in all sky conditions with a smaller error (rRMSE = 35.2%) than using EVI or PRI alone (38.7%-48.7%). Consequently, this combined index-derived ? and NDVI-based FAPAR gave a low estimation error of FCO2 (rRMSE = 36.4%, RMSE = 8.3 μmol m− 2 s− 1). Although there are still various issues to resolve, including adaptive limit and combination of vegetation index type, we conclude that the combination of PRI and EVI increased the accuracy of estimation of CO2 uptake in deciduous forest even though sky conditions varied.  相似文献   

9.
Assessing structural effects on PRI for stress detection in conifer forests   总被引:2,自引:0,他引:2  
The retrieval of indicators of vegetation stress from remote sensing imagery is an important issue for the accurate assessment of forest decline. The Photochemical Reflectance Index (PRI) has been demonstrated as a physiological index sensitive to the epoxidation state of the xanthophyll cycle pigments and to photosynthetic efficiency, serving as a proxy for short-term changes in photosynthetic activity, stress condition, and pigment absorption, but highly affected by illumination conditions, viewing geometry and canopy structure. In this study, a diurnal airborne campaign was conducted over Pinus sylvestris and Pinus nigra forest areas with the Airborne Hyperspectral Scanner (AHS) to evaluate the effects of canopy structure on PRI when used as an indicator of stress in a conifer forest. The AHS airborne sensor was flown at two times (8:00 GMT and 12:00 GMT) over forest areas under varying field-measured stress levels, acquiring 2 m spatial resolution imagery in 80 spectral bands in the 0.43-12.5 μm spectral range. Five formulations of PRI (based on R531 as a xanthophyll-sensitive spectral band) were calculated using different reference wavelengths, such as PRI570 (reference band RREF = R570), and the PRI modifications PRIm1 (RREF = R512), PRIm2 (RREF = R600), PRIm3 (RREF = R670), and PRIm4 (RREF = R570, R670), along with other structural indices such as NDVI, SR, OSAVI, MSAVI and MTVI2. In addition, thermal bands were used for the retrieval of the land surface temperature. A radiative transfer modeling method was conducted using the LIBERTY and INFORM models to assess the structural effects on the PRI formulations proposed, studying the sensitivity of PRIm indices to detect stress levels while minimizing the effects caused by the conifer architecture. The PRI indices were related to stomatal conductance, xanthophyll epoxidation state (EPS) and crown temperature. The modeling analysis showed that the coefficient of variation (CV) for PRI was 50%, whereas the CV for PRIm1 (band R512 as a reference) was only 20%. Simulation and experimental results demonstrated that PRIm1 (RREF = R512) was less sensitive than PRI (RREF = R570) to changes in Leaf Area Index (LAI) and tree densities. PRI512 was demonstrated to be sensitive to EPS at both leaf (r2 = 0.59) and canopy level (r2 = 0.40), yielding superior performance than PRI570 (r2 = 0.21) at the canopy level. In addition, PRI512 was significantly related to water stress indicators such as stomatal conductance (Gs; r2 = 0.45) and water potential (Ψ; r2 = 0.48), yielding better results than PRI570 (Gs, r2 = 0.21; Ψ, r2 = 0.21) due to the structural effects found on the PRI570 index at the canopy level.  相似文献   

10.
Since 2000, NASA's Moderate Resolution Imaging Spectro-radiometer (MODIS) has provided 1 × 1 km estimates of 8-day gross primary production (GPP). The MODIS algorithm computes GPP as a simple function of absorbed photosynthetically active radiation and a regionally assigned light-use conversion efficiency (LUE) that is reduced if temperature or atmospheric vapor pressure deficits are suboptimal. We compared MODIS-derived GPP estimates for forested areas across the United States of America (U.S.A.) with those generated by the 3-PGS (Physiological Principles Predicting Growth using Satellite data) model, the latter of which considers spatial variation in available soil water storage capacity (ASWC) and nitrogen content. We expected seasonal and annual MODIS GPP values to be in close agreement with those derived from the 3-PGS model in regions with adequate precipitation, soil water storage, and moderately fertile soils. 3-PGS was initially run with STATSGO-derived soils information provided by the Oak Ridge National Laboratory. The analysis was expanded to include sensitivity analyses with ASWC set at 50, 100, 300, and 400 mm to identify areas within nine major ecoregions where drought might prove to be a major limitation on GPP. The majority of forests across the U.S.A. were relatively insensitive to large variations in ASW storage. In areas where ASWC was assumed < 200 mm and average annual rainfall was < 100 mm yr− 1, GPP was predicted to be reduced by > 60%. There was generally good agreement (within 20%) between MODIS and 3-PGS estimates of forest GPP across the U.S.A. GPP predicted by the MODIS model was generally higher in ecoregions with substantial drought and with relatively low soil fertility. The latter, which influences LUE, was more than twice as important as soil drought.  相似文献   

11.
In this study, we assessed the accuracy of the MODIS (Moderate Resolution Imaging Spectroradiometer) GPP (gross primary productivity) Collections 4.5, 4.8 and 5 along with Leaf Area Index (LAI), fraction of absorbed Photosynthetically Active Radiation (fPAR), light use efficiency (LUE) and meteorological variables that are used to estimate GPP for a northern Australian savanna site. Results of this study indicated that the MODIS products captured the seasonal variation in GPP, LAI and fPAR well. Using the index of agreement (IOA), it was found that Collections 4.5 and 4.8 (IOA 0.89 respectively) agreed reasonably well with flux tower measurements between 2001 and 2006. It was also found that MODIS Collection 4.5 predicted the dry season GPP well (Relative Predictive Error (RPE) 4.17%, IOA 0.72 and Root Mean Square Error (RMSE) of 1.05 g C m− 2 day− 1), whilst Collection 4.8 performed better in capturing wet season dynamics (RPE 1.11%, IOA 0.80 and RMSE of 0.91 g C m− 2 day− 1). Although the wet season magnitude of GPP was predicted well by Collection 4.8, an examination of the inputs to the GPP algorithm revealed that MODIS fPAR was too high, but this was compensated by PAR and LUE that was too low. Although LAI and fPAR estimated by Collection 5 were more accurate, GPP for this Collection resulted in a much lower value (RPE 25%) due to errors in other factors. Recalculation of MODIS GPP using site specific input parameters indicated that MODIS fPAR was the main reason for the differences between MODIS and tower derived GPP followed by LUE and meteorological inputs. GPP calculated using all site specific values agreed very well with tower data on an annual basis (IOA 0.94, RPE 6.06% and RMSE 0.83 g C m− 2 day− 1) but the early initiation of the growing season calculated by the MODIS algorithm was improved when the vapor pressure deficit (VPD) function was replaced with a soil water deficit function. The results of this study however, reinforce previous findings in water limited regions, like Australia, and incorporation of soil moisture in a LUE model is needed to accurately estimate the productivity.  相似文献   

12.
A methodology for the assessment of fruit quality in crops subjected to different irrigation regimes is presented. High spatial resolution multispectral and thermal airborne imagery were used to monitor crown temperature and the Photochemical Reflectance Index (PRI) over three commercial orchards comprising peach, nectarine and orange fruit trees during 2008. Irrigation regimes included sustained and regulated deficit irrigation strategies, leading to high variability of fruit quality at harvest. Stem water potential was used to monitor individual tree water status on each study site. Leaf samples were collected for destructive sampling of xanthophyll pigments to assess the relationship between the xanthophyll epoxidation state (EPS) and PRI at leaf and airborne-canopy level. At harvest, fruit size, Total Soluble Solids (TSS) and Tritatable Acidity (TA) were measured to characterize fruit quality. A statistically significant relationship between EPS and PRI was found at the leaf (r2 = 0.81) and canopy level (r2 = 0.41). Airborne-derived crown PRI calculated from the imagery acquired during the fruit growth was related to the ratio of the total soluble solids normalized by the tritatable acidity (TSS/TA), an indicator of fruit quality measured on the same trees, yielding a coefficient of determination of r2 = 0.50. The relationship between the integral of PRI time-series and TSS/TA yielded a coefficient of determination of r2 = 0.72 (peach) and r2 = 0.61 (nectarines). On the contrary, the relation between TSS/TA and the time-series of crown thermal imagery was very weak (r2 = 0.21 and 0.25 respectively). These results suggest that a physiological remote sensing indicator related to photosynthesis, such as PRI, is more appropriate for fruit quality assessment than crown temperature, the established method of water stress detection, which is more related to crown transpiration. A radiative transfer modelling study was conducted to assess the potential validity of this methodology for fruit quality assessment when using medium spatial resolution imagery. The analysis shows important effects of soil and shadows on the PRI vs EPS relationship used for fruit quality assessment if non-pure crown reflectance was extracted from the imagery.  相似文献   

13.
Light use efficiency (LUE) is an important variable characterizing plant eco-physiological functions and refers to the efficiency at which absorbed solar radiation is converted into photosynthates. The estimation of LUE at regional to global scales would be a significant advantage for global carbon cycle research. Traditional methods for canopy level LUE determination require meteorological inputs which cannot be easily obtained by remote sensing. Here we propose a new algorithm that incorporates the enhanced vegetation index (EVI) and a modified form of land surface temperature (Tm) for the estimation of monthly forest LUE based on Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. Results demonstrate that a model based on EVI × Tm parameterized from ten forest sites can provide reasonable estimates of monthly LUE for temperate and boreal forest ecosystems in North America with an R2 of 0.51 (p < 0.001) for the overall dataset. The regression coefficients (a, b) of the LUE–EVI × Tm correlation for these ten sites have been found to be closely correlated with the average EVI (EVI_ave, R2 = 0.68, p = 0.003) and the minimum land surface temperature (LST_min, R2 = 0.81, p = 0.009), providing a possible approach for model calibration. The calibrated model shows comparably good estimates of LUE for another ten independent forest ecosystems with an overall root mean square error (RMSE) of 0.055 g C per mol photosynthetically active radiation. These results are especially important for the evergreen species due to their limited variability in canopy greenness. The usefulness of this new LUE algorithm is further validated for the estimation of gross primary production (GPP) at these sites with an RMSE of 37.6 g C m? 2 month? 1 for all observations, which reflects a 28% improvement over the standard MODIS GPP products. These analyses should be helpful in the further development of ecosystem remote sensing methods and improving our understanding of the responses of various ecosystems to climate change.  相似文献   

14.
The photochemical reflectance index (PRI) was developed to trace the changes in light use efficiency (LUE) as the two contributing reflectances at 531 nm and 570 nm are closely related to the xanthophyll pigment cycle. In this paper, two revised indices of PRI (PRIR1 and PRIR2) are derived for a better prediction of LUE during the growth cycle of wheat. The signal of chlorophyll content (reflectance at 550 nm) to PRI is incorporated so that the revised indices can be used to estimate LUE values at low chlorophyll concentration. A validation was conducted using ground data (reflectance and LUE data) during a growth cycle of wheat in 2007 (17 April, 28 April, 16, 29 May). The results demonstrate that PRI cannot be used as an index for LUE estimation during the growth cycle of wheat as the relationship between PRI and LUE significantly weakened (R2 = 0.20) on 29 May when the leaves lost chlorophyll concentration in the senescent period. PRIR1 and PRIR2 are more robust than PRI for LUE estimationm, not only with a relatively stable precision (R2 = 0.62, 0.76, 0.62, 0.57 for PRIR1 and R2 = 0.62, 0.76, 0.63, 0.59 for PRIR2) but also with better linearity with LUE (standard error of regression equation between LUE and index is 0.00187, 0.00127, 0.00116, 0.00103 for PRIR1 and 0.00186, 0.00117, 0.00114, 0.00102 for PRIR2). The result of the comparison analysis indicates that the revised indices (PRIR1 and PRIR2) are more sensitive than PRI to low chlorophyll content and low leaf area index, which means they are more appropriate for LUE interpretation in these situations. Sensitivity of Sun-sensor geometry to all indices implies that all indices exhibit large variations with changes in solar zenith angle and view zenith angle. As solar zenith angle increases, all indices display different sensitivity patterns before and after hotspot positions. All indices vary greatly as the view zenith angle increases. An acceptable precision of all indices can be acquired within a departure of 10° from the nadir view.  相似文献   

15.
Modelling PRI for water stress detection using radiative transfer models   总被引:1,自引:0,他引:1  
This paper presents a methodology for water stress detection in crop canopies using a radiative transfer modelling approach and the Photochemical Reflectance Index (PRI). Airborne imagery was acquired with a 6-band multispectral camera yielding 15 cm spatial resolution and 10 nm FWHM over 3 crops comprising two tree-structured orchards and a corn field. The methodology is based on the PRI as a water stress indicator, and a radiative transfer modelling approach to simulate PRI baselines for non-stress conditions as a function of leaf structure, chlorophyll concentration (Cab), and canopy leaf area index (LAI). The simulation work demonstrates that canopy PRI is affected by structural parameters such as LAI, Cab, leaf structure, background effects, viewing angle and sun position. The modelling work accounts for such leaf biochemical and canopy structural inputs to simulate the PRI-based water stress thresholds for non-stress conditions. Water stress levels are quantified by comparing the image-derived PRI and the simulated non-stress PRI (sPRI) obtained through radiative transfer. PRI simulation was conducted using the coupled PROSPECT-SAILH models for the corn field, and the PROSPECT leaf model coupled with FLIGHT 3D radiative transfer model for the olive and peach orchards. Results obtained confirm that PRI is a pre-visual indicator of water stress, yielding good relationships for the three crops studied with canopy temperature, an indicator of stomatal conductance (r2 = 0.65 for olive, r2 = 0.8 for peach, and r2 = 0.72 for maize). PRI values of deficit irrigation treatments in olive and peach were consistently higher than the modelled PRI for the study sites, yielding relationships with water potential (r2 = 0.84) that enabled the identification of stressed crowns accounting for within-field LAI and Cab variability. The methodology presented here for water stress detection is based on the visible part of the spectrum, and therefore it has important implications for remote sensing applications in agriculture. This method may be a better alternative to using the thermal region, which has limitations to acquire operationally high spatial resolution thermal imagery.  相似文献   

16.
Measurements of physiology, chlorophyll fluorescence and hyperspectral reflectance were used to detect salinity stress in the evergreen coastal shrub, Myrica cerifera on Hog Island, Virginia. Two experimental sites were used in our study, the oceanside of a M. cerifera thicket, which is exposed to sea spray, and the protected, leeside of the thicket. Using the physiological reflectance index (PRI), we were able to detect stress at both the canopy and landscape level. Monthly variations in stomatal conductance, photosynthesis, and relative water content indicated a strong summer drought response that was not apparent in chlorophyll fluorescence or in the water band index (WBI) derived from canopy and airborne reflectance measurements. In contrast, there were significant differences in both physiological measurements and tissue chlorides between the two sites used in the study, indicating salinity stress. This was reflected in measurements of PRI. There was a positive relationship between PRI measured at the canopy-level and light-adapted fluorescence (ΔF/F′m; r2 = 0.69). PRI was significantly lower on the oceanside of the Myrica cerifera thicket. PRI was not significantly related to NDVI (r2 = 0.01) at the canopy-level and only weakly related (r2 = 0.04) at the landscape-level, suggesting that the indices are independent. The chlorophyll index (CI) did not show any significant changes between the two sites. Frequency histograms of pixels sampled from airborne hyperspectral imagery revealed that the distribution of PRI was shifted to the right on the backside of the thicket relative to the oceanside and there was a significant difference between sites. These results suggest that PRI may be used for early identification of salt-stress and to identify areas across the landscape where community structure may change due to sea-level rise.  相似文献   

17.
Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m imagery   总被引:1,自引:0,他引:1  
We developed an approach to map turbidity in estuaries using a time series (May 2003 to April 2006) of 250-m resolution images from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite, using Tampa Bay as a case study. Cross-calibration of the MODIS 250-m data (originally designed for land use) with the well-calibrated MODIS 1-km ocean data showed that the pre-launch radiometric calibration of the 250-m bands was adequate. A simple single scattering atmospheric correction provided reliable retrievals of remote sensing reflectance at 645 nm (0.002 < Rrs(645) < 0.015 sr− 1, median bias = − 7%, slope = 0.95, intercept = 0.00, r2 = 0.97, n = 15). A more rigorous approach, using a multiple scattering atmospheric correction of the cross-calibrated at-sensor radiances, retrieved similar Rrs(645). Rrs(645) estimates, after stringent data quality control, showed a close correlation with in situ turbidity (turbidity = 1203.9 × Rrs(645)1.087, 0.9 < turbidity < 8.0 NTU, r2 = 0.73, n = 43). MODIS turbidity imagery derived using the developed approach showed that turbidity in Hillsborough Bay (HB) was consistently higher than that in other sub-regions except in August and September, when higher concentrations of colored dissolved organic matter seem to have caused underestimates of turbidity. In comparison, turbidity in Middle Tampa Bay (MTB) was generally lowest among the Bay throughout the year. Both Old Tampa Bay (OTB) and Low Tampa Bay (LTB) showed marked seasonal variations with higher turbidity in LTB during the dry season and in OTB during the wet season, respectively. This seasonality is linked to wind-driven bottom resuspension events in lower portion of the Bay and river inputs of sediments in the upper portion of the Bay. The Bay also experiences significant interannual variation in turbidity, which was attributed primarily to changes in wind forcing. Compared with the once-per-month, non-synoptic in situ surveys, synoptic and frequent sampling facilitated by satellite remote sensing provides improved assessments of turbidity patterns and thus a valuable tool for operational monitoring of water quality of estuarine and coastal waters such as in Tampa Bay.  相似文献   

18.
The Photochemical Reflectance Index (PRI) is used as an indicator of leaf and plant canopy photosynthetic efficiency. However, the photosynthetic efficiency-PRI relationship has been shown to be inconsistent over time, likely due to changes in foliar pigment content.We measured reflectance spectra and biochemical properties from 24 leaves of two deciduous tree species and acquired pigment and reflectance data from the Leaf Optical Properties EXperiment database for an additional nine species. These data were used as inputs for the PROSPECT-5 leaf optical model. We found measurements of PRI to be significantly (p < 0.05) correlated with chlorophyll content, carotenoid content, and the carotenoid/chlorophyll ratio. However, only the PRI-carotenoid/chlorophyll ratio relationship was consistent across all analyses. Two predictive equations were derived from PROSPECT-5 simulations: a curvilinear PRI model (PRI(clm)) predicted the carotenoid/chlorophyll ratio (r2 = 0.99), and a linear model using the chlorophyll index (CI(lm)) predicted chlorophyll content (r2 = 0.98). Multiplying PRI(clm) with CI(lm) canceled the influence of chlorophyll content on PRI(clm) and thus allowed for prediction of carotenoid content from 11 deciduous tree species (r2 = 0.83). Our results confirm that the PRI is significantly influenced by chlorophyll and carotenoid pools and demonstrate a new approach for non-destructive estimation of leaf carotenoid content using the PRI. Because variation in foliar physiological status is known to relate to leaf carotenoid content and the carotenoid/chlorophyll ratio, convolving the PRI with a chlorophyll index is likely to be useful for understanding the photosynthetic performance of deciduous vegetation across a wide range of temporal periods, ranging from daily to seasonal time scales.  相似文献   

19.
Monitoring of photosynthetic efficiency (ε) over space and time is a critical component of climate change research as it is a major determinant of the amount of carbon accumulated by terrestrial ecosystems. While the past decade has seen progress in the remote estimation of ε at the leaf, canopy and stand level using the photochemical reflectance index PRI (based on the normalized difference of reflectance at 531 and 570 nm), little is known about the temporal and spatial requirements for up-scaling PRI to landscape and global levels using satellite observations. One potential way to investigate these requirements is using automated tower-based remote sensing platforms, which observe stand level reflectance with high spatial, temporal, and spectral resolution. Prediction of ε from PRI diurnally or over a full year requires observations of canopy reflectance over multiple view and sun-angles. As a result, these observations are subject to directional reflectance effects which can be interpreted in terms of the bidirectional reflectance distribution function (BRDF) using semi-empirical kernel driven models. These semi-empirical models use a combination of physically based BRDF shapes and empirical observations to standardize multi-angular observations to a common viewing and illumination geometry. Directional reflectance effects are thereby modeled as a linear superposition of mathematical kernels, representing the bi-direction variation in reflectance from isotropic, geometric, and volumetric scattering components of the vegetation canopy. However, because variations in plant physiological conditions can also introduce bidirectional reflectance variations, we introduce an approach to separate bidirectional effects arising purely from plant physiological status from other effects by stratifying PRI observations into categories based on environmental conditions for which the expected physiological variability is low. Within each of these PRI strata, the derived physically based BRDF shapes were used to standardize multi-angular PRI measurements to a common viewing and illumination geometry. The method significantly enhanced the relationship found between PRI and ε (from r2 = 0.38 for the directionally uncorrected case to r2 = 0.82 for the directionally corrected case) from data measured continuously over the course of 1 year over an evergreen conifer forest using an automated platform. Results show that isotropic PRI scattering is highly correlated to changes in ε, while geometric scattering can be related to canopy level shading. Instrumentation and approaches such as the one demonstrated in this study may be integrated into current efforts aiming at predicting ε at global scales using satellite observations.  相似文献   

20.
Landsat imagery with a 30 m spatial resolution is well suited for characterizing landscape-level forest structure and dynamics. While Landsat images have advantageous spatial and spectral characteristics for describing vegetation properties, the Landsat sensor's revisit rate, or the temporal resolution of the data, is 16 days. When considering that cloud cover may impact any given acquisition, this lengthy revisit rate often results in a dearth of imagery for a desired time interval (e.g., month, growing season, or year) especially for areas at higher latitudes with shorter growing seasons. In contrast, MODIS (MODerate-resolution Imaging Spectroradiometer) has a high temporal resolution, covering the Earth up to multiple times per day, and depending on the spectral characteristics of interest, MODIS data have spatial resolutions of 250 m, 500 m, and 1000 m. By combining Landsat and MODIS data, we are able to capitalize on the spatial detail of Landsat and the temporal regularity of MODIS acquisitions. In this research, we apply and demonstrate a data fusion approach (Spatial and Temporal Adaptive Reflectance Fusion Model, STARFM) at a mainly coniferous study area in central British Columbia, Canada. Reflectance data for selected MODIS channels, all of which were resampled to 500 m, and Landsat (at 30 m) were combined to produce 18 synthetic Landsat images encompassing the 2001 growing season (May to October). We compared, on a channel-by-channel basis, the surface reflectance values (stratified by broad land cover types) of four real Landsat images with the corresponding closest date of synthetic Landsat imagery, and found no significant difference between real (observed) and synthetic (predicted) reflectance values (mean difference in reflectance: mixed forest x? = 0.086, σ = 0.088, broadleaf x? = 0.019, σ = 0.079, coniferous x? = 0.039, σ = 0.093). Similarly, a pixel based analysis shows that predicted and observed reflectance values for the four Landsat dates were closely related (mean r2 = 0.76 for the NIR band; r2 = 0.54 for the red band; p < 0.01). Investigating the trend in NDVI values in synthetic Landsat values over a growing season revealed that phenological patterns were well captured; however, when seasonal differences lead to a change in land cover (i.e., disturbance, snow cover), the algorithm used to generate the synthetic Landsat images was, as expected, less effective at predicting reflectance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号