首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatial Distributions of Trapping Centers in HfO2/SiO2 Gate Stack   总被引:1,自引:0,他引:1  
An analysis methodology for charge pumping (CP) measurements was developed and applied to extract spatial distributions of traps in SiO 2/HfO2 gate stacks. This analysis indicates that the traps accessible by CP measurements in the frequency range down to a few kilohertz are located primarily within the SiO2 layer and HfO2/SiO2 interface region. The trap density in the SiO2 layer increases closer to the high-kappa dielectric, while the trap spatial profile as a function of the distance from the high-kappa film was found to be dependent on high-kappa film characteristics. These results point to interactions with the high-kappa dielectric as a cause of trap generation in the interfacial SiO2 layer  相似文献   

2.
In this letter, we focus on the border-trap characterization of TaN/HfO2/Si and TaN/HfO2/strained-Si/Si0.8Ge0.2 n-channel MOSFET devices. The equivalent oxide thickness for the gate dielectrics is 2 nm. Drain-current hysteresis method is used to characterize the border traps, and it is found that border traps are higher in the case of high-kappa films on strained- Si/Si0.8Ge0.2 .These results are also verified by the 1/f-noise measurements. Possible reasons for the degraded interface quality of high-kappa films on strained-Si are also proposed.  相似文献   

3.
Long-channel Ge pMOSFETs and nMOSFETs were fabricated with high-kappa CeO2/HfO2/TiN gate stacks. CeO2 was found to provide effective passivation of the Ge surface, with low diode surface leakage currents. The pMOSFETs showed a large I ON/IOFF ratio of 106, a subthreshold slope of 107 mV/dec, and a peak mobility of approximately 90 cm2 /Vmiddots at 0.25 MV/cm. The nMOSFET performance was compromised by poor junction formation and demonstrated a peak mobility of only ~3 cm2/Vmiddots but did show an encouraging ION/I OFF ratio of 105 and a subthreshold slope of 85 mV/dec  相似文献   

4.
Due to the rapid transient charging and discharging effects in high-k dielectrics, conventional "stress and sense" techniques cannot be reliably applied to study the oxide traps in these dielectrics. We introduce a new transient methodology based on the pulsed-MOS-capacitor measurement, which allows us to observe aspects of the dynamics of transient charging and discharging behavior in the high-k dielectric. The method is relatively simple and easy to employ. It has the advantage that the surface is depleted during the initial transient allowing the effect of anomalous positive charge and electron trapping to be isolated. We apply this technique to explain oxide charging in HfO2 samples deposited by atomic layer deposition and metal-organic chemical vapor deposition  相似文献   

5.
Metal-insulator-metal (MIM) capacitors with a 56 nm thick HfO2 high-κ dielectric film have been fabricated and demonstrated for the first of time with a low thermal budget (~200°C). Voltage linearity, temperature coefficients of capacitance, and electrical properties are all characterized. The results show that the HfO2 MIM capacitor can provide a higher capacitance density than Si3N4 MIM capacitor while still maintaining comparable voltage and temperature coefficients of capacitance. In addition, a low leakage current of 2×10-9 A/cm2 at 3 V is achieved. All of these make the HfO 2 MIM capacitor to be very suitable for use in silicon RF and mixed signal IC applications  相似文献   

6.
Low-frequency noise was characterized in Si0.7Ge0.3 surface channel pMOSFETs with ALD Al2O3/HfO2/Al2O3 stacks as gate dielectrics. The influences of surface treatment prior to ALD processing and thickness of the Al2O3 layer at the channel interface were investigated. The noise was of the 1/f type and could be modeled as a sum of a Hooge mobility fluctuation noise component and a number fluctuation noise component. Mobility fluctuation noise dominated the 1/f noise in strong inversion, but the number fluctuation noise component, mainly originating from traps in HfO2, also contributed closer to threshold and in weak inversion. The number fluctuation noise component was negligibly small in a device with a 2 nm thick Al2O3 layer at the SiGe channel interface, which reduced the average 1/f noise by a factor of two and decreased the device-to-device variations.  相似文献   

7.
Atomic layer deposition (ALD) with HfCl4 as a precursor is widely used for HfO2 fabrication. Due to the nature of the precursor under study, i.e., HfCl4 and H2O, the presence of chlorine residues in the film due to insufficient hydrolysis is eminent. Obviously, the chlorine residue in the HfO2 film is suspected to affect the quality of the HfO2 film. In this paper, The authors reduced the concentration of chlorine residues by increasing the H2O oxidant pulse time in between the deposition cycles from 0.3 to 10 and 90 s. Time-of-flight secondary ion mass spectrometry analysis shows that this decreases the chlorine concentration in the HfO2 film by more than one order of magnitude. However, time-dependent dielectric breakdown analysis shows that the lifetime remains quasi unaffected (within identical error bars) for the different injection cycles. Charge pumping analysis was done by varying both pulse frequency and amplitude to investigate the creation of defects, but negligible differences were observed. Therefore, the presence of chlorine residues has no significant impact on the trap generation and reliability of ALD HfO2 layers, and this result corresponded with the mobility result. The experimental picture is confirmed with first-principle calculations that show that the presence of chlorine residues does not induce defect levels in the bandgap of HfO2  相似文献   

8.
The reliability characteristics of SiO2/ZrO2 gate dielectric stacks on strained-Si/Si0.8Ge0.2 have been investigated under dynamic and pulsed voltage stresses of different amplitude and frequency in order to analyze the transient response and the degradation of oxide as a function of stress parameters. The current transients observed in dynamic voltage stresses have been interpreted in terms of the charging/discharging of interface and bulk traps. The evolution of the current during unipolar pulsed voltage stresses shows the degradation being much faster at low frequencies than at high frequencies. Results have been compared with those obtained after CVS, as a function of injected charge and pulse frequency.  相似文献   

9.
In this letter, we investigate the long-term reliability characteristics of ultrathin HfO2 dielectrics on nitrided germanium for the first time. Stress-polarity dependence in charge trapping and time-dependent dielectric-breakdown (TDDB) characteristics has been observed in germanium nand p-type devices. The p-MOS devices exhibit severe charge trapping under stress, while no significant charge trapping and stress-induced leakage current were found in the n-MOS devices. In terms of operation-voltage projection for a ten-year lifetime, Vg=2.8 and -2.1 V is projected for the germanium p- and n-MOS devices, respectively, with an equivalent oxide thickness of 11 Aring. Compared to Si control samples, germanium devices show a comparable projected operation voltage, indicating that the TDDB for high-kappa dielectrics on nitrided germanium is not a concern. The stress-polarity dependence in germanium devices is believed to result from the asymmetrical band structure and the significant difference of the electric field strength across the gate dielectric between the positive and negative stress conditions  相似文献   

10.
The nonvolatile memory properties of the partially crystallized HfO2 charge storage layer are investigated using short-channel devices of gate length Lg down to 80 nm. Highly efficient two-bit and four-level device operation is demonstrated by channel hot electron injection programming and hot hole injection erasing for devices of Lg > 170 nm, although the reduction of the memory window is observed for devices of Lg < 170 nm. A memory window of 5.5 V, ten-year retention of Vth clearance larger than 1.5 V between adjacent levels, endurance for 105 programming/erasing cycles, and immunity to programming disturbances are demonstrated. Flash memory with partially crystallized HfO2 shows a larger memory window than HfO2 nanodot memory, assisted by the enhanced electron capture efficiency of an amorphous HfO2 matrix, which is lacking in other types of reported nanodot memory. The scalability, programming speed, Vth control for two-bit and four-level operation, endurance, and retention are also improved, compared with NROM devices that use a Si3N4 trapping layer.  相似文献   

11.
Fluorine passivation in poly-Si/TaN/HfO2/p-Si and poly-Si/TaN/HfSiON/HfO2/p-Si gate stacks with varying TaN thickness through gate ion implantation has been studied. It has been found that when TaN thickness was less than 15 nm, mobility and subthreshold swing improved significantly in HfO2 nMOSFETs; while there was little performance improvement in HfSiON/HfO2 nMOSFETs due to the blocking of F atoms by the HfSiON layer in gate dielectrics, as has been proved by the electron energy loss spectroscopy mapping  相似文献   

12.
A novel device structure with a high-k HfO2 charge storage layer and dual tunneling layer (DTL) (SiO2/Si3N4) is presented in this paper. Combining advantages of the high trapping efficiency of high-k materials and enhanced charge injection from the substrate through the DTL, the device achieves a fast program/erase speed and a large memory window. The device demonstrates excellent retention due to its physically thick DTL and also improved endurance without any increase of programming Vth throughout the cyclic test as compared with SONOS Flash memory devices using an Si3N4 trapping layer.  相似文献   

13.
漆世锴  王小霞  王兴起  胡明玮  刘理  曾伟 《电子学报》2000,48(11):2233-2241
为了提高大功率磁控管的输出功率,延长其使用寿命,采用难熔稀土氧化钆和过渡金属氧化铪制备大功率磁控管用新型直热式稀土铪酸钆陶瓷阴极,并对该阴极的热发射特性和寿命特性等进行了测试,热发射测试结果显示该阴极在1300℃ br即可提供0.1A/cm2发射电流密度,1600℃ br下可提供超过1.93A/cm2的发射电流密度.寿命实验结果显示,该阴极在1500℃ br,直流负载为0.5A/cm2的条件下,寿命已经超过4000h.最后,利用X射线衍射仪、扫描电镜、能谱分析仪、氩离子深度刻蚀俄歇电镜等设备分别对该阴极活性物质的分子结构,阴极表面微观形貌、元素成分及含量等进行了分析.结果表明,高温烧结合成了单一的铪酸钆物相,烧结过程中当一种Gd3+价稀土氧化钆掺入Hf4+价的过渡金属氧化铪时,会发生离子置换固溶,为了保持铪酸钆晶格的电中性,晶格中就会产生一个氧空位.当阴极在激活、老练、热发射测试时,会加速氧空位的生成,产生的氧空位越多,阴极表面导电性就会越好,这间接降低了逸出功,从而提高了阴极的热发射能力.  相似文献   

14.
热退火技术是集成电路制造过程中用来改善材料性能的重要手段。系统分析了两种不同的退火条件(氨气氛围和氧气氛围)对TiN/HfO2/SiO2/Si结构中电荷分布的影响,给出了不同退火条件下SiO2/Si和HfO2/SiO2界面的界面电荷密度、HfO2的体电荷密度以及HfO2/SiO2界面的界面偶极子的数值。研究结果表明,在氨气和氧气氛围中退火会使HfO2/SiO2界面的界面电荷密度减小、界面偶极子增加,而SiO2/Si界面的界面电荷密度几乎不受退火影响。最后研究了不同退火氛围对电容平带电压的影响,发现两种不同的退火条件都会导致TiN/HfO2/SiO2/Si电容结构平带电压的正向漂移,基于退火对其电荷分布的影响研究,此正向漂移主要来源于退火导致的HfO2/SiO2界面的界面偶极子的增加。  相似文献   

15.
Novel yttrium- and terbium-based interlayers (YIL and TbIL, respectively) on SiO2 and HfO2 gate dielectrics were employed for NMOS work function Phim modulation of undoped nickel fully silicided (Ni-FUSI) gate. Bandedge Ni-FUSI gate Phim of ~4.11 and ~4.07 eV was obtained by insertion of ultrathin (~1 nm) YIL and TbIL, respectively, on the SiO2 gate dielectric in a gate-first process (with 1000 degC anneal). NiSi Phim on SiO2 could also be tuned between the Si midgap and the conduction bandedge EC by varying the interlayer thickness. The achievement of NiSi Phim around 4.28 eV on the HfO2 gate dielectric using interlayer insertion makes this an attractive Phim modulation technique for Ni-FUSI gates on SiO2 and high-k dielectrics  相似文献   

16.
Detailed measurements of front- and back-channel characteristics in advanced SOI MOSFETs (ultrathin Si film, high-kappa, metal gate, and selective epitaxy of source/drain) are used to reveal and compare the transport properties at the corresponding Si/high- kappa (HfO2 or HfSiON) and Si/SiO2 interfaces. Low-temperature operation magnifies the difference between these two interfaces in terms of carrier mobility, threshold voltage, and subthreshold swing. As compared with Si/SiO2, the low-field mobility is lower at the Si/high-kappa interface and increases less rapidly at low temperature, reflecting additional scattering mechanisms governed by high-kappa and neutral defects.  相似文献   

17.
Electrical and reliability properties of ultrathin HfO2 have been investigated. Pt electroded MOS capacitors with HfO2 gate dielectric (physical thickness ~45-135 Å and equivalent oxide thickness ~13.5-25 Å) were fabricated. HfO2 was deposited using reactive sputtering of a Hf target with O2 modulation technique. The leakage current of the 45 Å HfO2 sample was about 1×10-4 A/cm 2 at +1.0 V with a breakdown field ~8.5 MV/cm. Hysteresis was <100 mV after 500°C annealing in N2 ambient and there was no significant frequency dispersion of capacitance (<1%/dec.). It was also found that HfO2 exhibits negligible charge trapping and excellent TDDB characteristics with more than ten years lifetime even at VDD=2.0 V  相似文献   

18.
MOSFETs incorporating ZrO2 gate dielectrics were fabricated. The IDS-VDS, IDS-VGS , and gated diode characteristics were analyzed to investigate the ZrO2/Si interface properties. The interface trap density (D it) was determined to be about 7.4times1012 cm -2middoteV-1 using subthreshold swing measurement. The surface-recombination velocity (s0) and the minority carrier lifetime in the field-induced depletion region (tau 0,FIJ) measured from the gated diodes were about 3.5times10 3 cm/s and 2.6times10-6 s, respectively. The effective capture cross section of surface state (sigmas) was determined to be about 5.8times10-16 cm2 using the gated diode technique and the subthreshold swing measurement. A comparison with conventional MOSFETs using SiO2 gate oxides was also made  相似文献   

19.
The dependence of the first Stokes stimulated Raman conversion efficiency of fourth-harmonic radiation from a Nd:YAG laser at 266 nm has been studied for the isotopic species H2, HD, and D2 as a function of gas pressure and laser energy using a low numerical aperture (~4.5×10-3) pumping geometry. While the laser energy threshold for first Stokes conversion is seen to vary significantly between the species it has been found that photon conversion efficiencies of at least 50% can be achieved for all of them for laser pump energies at 266 nm ⩽50 mJ/pulse. This study provides a new measurement of the differential cross section for stimulated Raman scattering in HD of 8.1±2.4×10-29 cm2/sr at 266 nm and at high pressures, and agreement is found with previous measurements of the cross sections for H2 and D2. The results have been used to optimize the laser transmitter system for a differential absorption lidar (DIAL) system to measure tropospheric ozone concentration profiles  相似文献   

20.
To understand the influence of oxygen vacancies in on the electrical and reliability characteristics, we have investigated area-dependent leakage-current characteristics of HfO2 with large-area device and conducting atomic force microscopy (C-AFM). Unlike with the large-area analysis with typical capacitor and transistor, a clear evidence of oxygen vacancy was observed in nanoscale-area measurement using the C-AFM. Similar observations were made in various postdeposition annealing ambients to investigate the generation and reduction of oxygen vacancy in HfO2 . With optimized postdeposition annealing for oxygen vacancy, significantly reduced charge trapping was observed in HfO2 nMOSFET.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号