首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
以碳毡为预制体,N2为稀释气体,甲烷为碳源前驱体,其分压为10 kPa,滞留时间为0.15 s的工艺条件下,研究了不同沉积温度对微波热解化学气相渗透(chemical vapor infiltration,CVI)工艺制备碳/碳复合材料的致密化速率、样品的体积密度及其密度均匀性的影响,并对其组织结构进行了观察.分析了沉积温度对微波热解CVI工艺制备碳/碳复合材料的密度与组织结构的变化规律.结果表明:在微波热解CVI工艺中,随着沉积温度的降低,碳毡预制体的致密化速率及最终体积密度呈现先升后降,1100 ℃沉积制备复合材料的密度均匀性最好,并呈现从内到外逐步沉积的规律.热解碳的织构主要为中等织构.  相似文献   

2.
中的预热解;同时,碳纤维预制体经微波加热后,自发产生一定的温度梯度(预制体表面温度低于内部),抑制了预制体表面的气相热解反应,从而避免了由于在表面沉积引起的结壳现象,使前驱气体能保持线性小分子的状态向预制体内部输送,为实现预制体从内到外逐步致密提供了条件.  相似文献   

3.
本发明涉及一种碳纤维与热解碳基体中间相沥青过渡层复合材料的制备办法。先将碳纤维预制体放红不锈钢浸渍罐中,用中间相沥青粉包埋后放入浸渍炉,存惰性气氛保护下进行真空浸渍,然后存碳化炉中,在惰性气氛保护下,采用不同升温速率分段升温、保温,进行碳化,然后放入化学气相沉积炉中用化学气相渗透法进行沉积,制成中间相沥青过渡层碳/碳复合材料成品。  相似文献   

4.
本文通过对不同尺寸、叠层层数,密度,形状和孔洞的碳毡进行自加热研究,探究了不同物性参数碳毡预制体的自加热规律,并进一步进行了自加热热解沉积制备C/C复合材料的可行性研究。研究发现:预制体在加热中能维持高温,并能在预制体中形成一定的逆向温度梯度,在自加热的工艺条件下,热解沉积制备C/C复合材料工艺是完全可行的。  相似文献   

5.
CVI法快速制备C/SiC复合材料   总被引:7,自引:1,他引:7  
为缩短CVI法制备C/SiC复合材料的工艺周期并降低成本,研究了CVI工艺过程中沉积温度、MTS(CH3SiC3)摩尔分数和气体流量对SiC沉积速率和MTS有效利用率的影响,实验结果表明:提高沉积温度,常压下1100℃时增大MTS摩尔分数(11%→19%),都有利于提高SiC沉积速率;提高沉积温度和降低反应物气体流量,能提高MTS有效利用率,在优化的工艺条件下,预制体的微观孔隙内沉积了致密的SiC基体,沉积速率达到142μm/h左右,并有效消除了基体中裂纹的形成,MTS的有效利用率为11%-27%。  相似文献   

6.
本文研究了用化学气相渗工艺的均热法制备炭纤维增强碳化硅(C/SiC)复合材料,其中有部分材料在沉积碳化硅之前先沉积少量热解碳,以作为界面层。对有界面层和无界面层的材料进行了拉伸试验。用金相显微镜和扫描电镜观察了材料微观结构及继口形貌。结果表明,C/SiC材料力学性能主要取决于纤维与基体的界面。有热解碳界面层的C/SiC材料,在拉伸断裂时出现大范围脱粘,断口类似毛刷,材料强度大,断裂功也大,有很大的  相似文献   

7.
热解碳的生产工艺及原理探讨   总被引:2,自引:0,他引:2  
介绍了热解碳的工艺原理,利用N2气作载气,在1300-1400℃条件下,将含20%碳氢化合物气体热解,制出致密的热碳镀层,并分析了温度、气体浓度、N2纯度等对产品性能的影响。  相似文献   

8.
9.
研究了沉积温度、反应气浓度等因素对沉积过程的影响,并对所得试样的微观组织结构及其内部孔隙的分布规律进行了分析。研究表明,当沉积温度低于900℃时,可以避免或减少沉积过程中炭黑的生成,在该前提下,正压CVI工艺可在较短时间内制备出具有合理微观组织结构的C/C复合材料制作,因此提高了反应气体的利用率,正压CVI工艺是一种低成本的C/C复合材料制备工艺。  相似文献   

10.
沉积表面粗糙度对热解炭组织结构的影响   总被引:4,自引:0,他引:4  
详细分析了等温CVD法在不同粗糙度的表面沉积的热解炭的组织。主要对组织类型及微观形貌特征作了详细描述。并且分析了组织形成的机理,首次指出热解炭的反复成核和生长机理,用偏光显微照片中的热解炭组织与断口SEM形貌作对比,证明了反复成核生长机理的实际存在。  相似文献   

11.
化学气相沉积(CVD)炭/碳复合材料(C/C)研究现状   总被引:6,自引:1,他引:6  
主要介绍了炭/炭复合材料(C/C)的化学气相沉积(CVD0制备方法及其影响因素,以及热解炭的组织与沉积机理。概括了VCD的基本方法,如等温法、压差法、热梯度法等。分析了温度、气流速率、气体浓度、预制体及孔隙的形状大小状况等对CVD过程的影响。列举了热解炭的组织,包括光滑层、粗糙层、各向同性体碳以及它们的变体,并对其生长特征及性能进行了较详细的描述。综述了热解炭的沉积机理,典型的有分子沉积、固态沉积、液滴沉积机理等。  相似文献   

12.
综合评述了化学液相气化渗透(chemical liquid vapor infiltration, CLVI)法制备炭/炭(C/C)复合材料的研究.概述了CLVI法的工艺特点及其快速致密的原理,并分别从预制体形状、发热体加热方式、前驱体种类等方面介绍了近年来各种改进的CLVI工艺.分析了制备方式、温度以及前驱体种类等对热解炭微观结构的影响.展望了CLVI法制备C/C复合材料的发展趋势.综合分析表明:目前,CLVI法尚不能满足应用于工业化生产的要求,今后将向多试样沉积、低能量消耗、前驱体高利用率等方向发展.  相似文献   

13.
碳/碳复合材料等温化学气相渗透工艺模糊系统建模   总被引:6,自引:1,他引:6  
等温化学气相渗透(chemical vapor infiltration,CVI)是制备陶瓷基和碳基复合材料重要的传统工艺,该工艺主要的不足之处是周期极长,因此,优化工艺参数、提高沉积效率是目前等温CVI工艺研究的重点。在实验样本的基础上,利用遗传算法来自动获取和优化模糊规则,从而建立了碳/碳复合材料等温CVI工艺模糊系统。通过系统对训练样本和测试样本的输出,可以看出:系统具有较高的精度和泛化能力。利用该系统,得到了沉积温度、纤维体积分数和沉积室压强等参数对等温CVI工艺的影响规律,对实际生产中CVI工艺的制定有指导意义。  相似文献   

14.
热解炭的微观结构及其测试方法   总被引:2,自引:0,他引:2  
主要介绍了利用正交偏光显微镜(PLM)、X射线衍射(XRD)、透射电镜(TEM)和喇曼光谱(RS)等测试方法,对采用化学气相沉积(CVD)法制备的C/C复合材料的热解炭的表面微观形貌、沉积炭层间距d002、微晶尺寸Lc及其石墨化度等参数进行表征和测量,从而判断沉积的热解炭的织构类型(光滑层、粗糙层和各向同性炭),并且分析了上述各种测试手段的优缺点。  相似文献   

15.
CVI法制备三维碳纤维增韧碳化硅复合材料   总被引:16,自引:4,他引:16  
利用三维编织的碳纤维预制体,采用等温CVI的方法制备出了碳纤维增韧碳化硅复合材料。对于无碳界面层的复合材料(C/SiC),弯曲强度和断裂韧性随密度的提高而提高,最大值分别为520MPa和16.5MPa·m^1/2。密度高的复合材料呈明显的脆性断裂,而密度较低的材料在断裂过程中存在纤维束的拔出而表现出韧性断裂行为。密度较高和无碳界面的复合材料,经1550℃高温处理后,弯曲强度明显降低(350MPa)  相似文献   

16.
热解炭的化学气相沉积机理和组织形貌   总被引:3,自引:0,他引:3  
以石油液化气作为沉积气体,在900~1300℃温度内研究热解炭在炭纤维上的沉积机理及组织形貌。研究发现:热解炭在纤维表面上通过形核、长大,大晶粒吞并小晶粒的过程,形成宏观上均匀平整而微观上呈球状突起的表面形貌。热解炭以层状微晶(主导)和球状微晶(辅助)两种模式同时生长,最终得到层状结构。在微观上热解炭由若干个的炭层组成,每一层的炭层内含有若干小的并与微晶尺寸相当的亚层。热解炭中的微晶排列不规整,层状和球状微晶均可通过位置的移动调整和脱氢来优化结构。  相似文献   

17.
利用常压化学气相沉积法在浮法玻璃表面制备了二氧化钛薄膜。研究了水蒸气、氧气含量和衬底温度以及反应器与衬底的距离对薄膜制备过程中沉积速率的影响。结果表明:当水蒸气质量浓度为50mg/L。氧气含量为总气体流量的8%时,薄膜的沉积速率可达30nm/s,随着衬底温度从300℃升到600℃,薄膜的沉积速率从15nm/s增加到30nm/s;然而随着反应器与衬底的距离从2mm增加到12mm,薄膜的沉积速率从30nm/s降到10nm/s,但大面积薄膜层的厚度差从10nm降低到2nm,薄膜比较均匀。  相似文献   

18.
对化学气相沉积(CVD)法制备SiC的热力学进行了系统研究,考察了H2-MTS,Ar-SiO-C,H2-SiO-CxHy,H2-SiH4-CxHy等体系,着重研究了温度、压力、载气量和初始反应气体浓度对沉积单相SiC的影响,以CVD相图的形式给出了计算结果,这些相图对CVD法制备SiC的实验具有指导作用.  相似文献   

19.
低压化学气相沉积制备掺硼碳薄膜及其表征   总被引:1,自引:0,他引:1  
以BCl3和C3H6分别作为低压化学气相沉积制备掺硼碳材料的硼源和碳源,采用热壁化学气相沉积炉,于1 100℃在碳纤维基底上制备了掺硼碳薄膜.采用扫描电镜、X射线衍射和X射线光电子能谱对样品作了表征.结果表明:产物表面光滑,断面呈细密的片层状结构,产物由B4C和石墨化程度较高的热解碳组成.采用掺硼碳薄膜中含有15%(摩尔分数,下同)硼.硼原子化学键结合状态共有5种,分别是:B4C的中的B-C键,硼原子替代固溶在类石墨结构中形成的B-C键,BC2O和BCO2结构中B-C键和B-O键的混合态,以及B2O3中的B-O键.其中超过40%的硼原子以替代固溶的形式存在于热解碳的类石墨结构中.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号