首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Potentiostatic electrodeposition and sulfurization techniques were used to prepare polycrystalline CuInS2 thin films. X-ray diffraction and photoresponse measurements in a photoelectrochemical cell (PEC) revealed that photoactive polycrystalline CuInS2 films can be deposited on Ti substrate. Photoluminescence (PL) spectroscopy was used to investigate the prepared thin films and optically characterize them. PL spectra revealed the defect structure of the samples with an acceptor energy level at 109 meV above the valance band and a donor energy level at 71 meV below the conduction band. The CuInS2 thin films prepared in this investigation are observed to be In-rich material with n-type electrical conductivity.  相似文献   

2.
Single crystals CuInS2 were grown by iodine vapour transport method, whereas polycrystalline thin films were obtained by coevaporation technique from three sources. The temperature dependence of the hole mobility in valence band is analysed by taking into account contributions from several scattering mechanisms of the charge carriers. To account for the temperature dependant conductivity of polycrystalline CuInS2 thin films, grainboundary conduction process was suggested. In the low temperature region, we interpret the data in terms of the Mott law and the analysis is very consistent with the variable range hopping. However, thermionic emission is predominant at high temperatures. Photoluminescence measurements have been performed on CuInS2 crystals and the analysis has revealed that the emission is mainly due to free-to-bound and donor–acceptor pair transitions. The band gap of that compound is derived from the excitonic emission line at 1.53 eV.  相似文献   

3.
CuGaSe2 thin films with thicknesses of about 2 μm were prepared by flash and single source evaporation onto mica and (1 1 0)-oriented ZnSe substrates in the substrate temperature range 150–450°C. The obtained polycrystalline CuGaSe2 films had the chalcopyrite structure with the predominant growth direction 2 2 1. Hall effect, conductivity and luminescence measurements have been carried out on CuGaSe2 thin films and source materials: CuGaSe2 single crystals grown by Bridgman technique and by chemical vapour transport using I2 as transport agent. All films and crystals are p-type. Two acceptor levels with ionization energies EA150–56 meV and EA2130–150 meV have been identified as due to Ga vacancy and presence of Se atoms on interstitial sites respectively.  相似文献   

4.
In this article we have discussed the structural, optical properties of vacuum evaporated CdTe thin films before and after CdCl2 treatment. The CdTe thin films were prepared by vacuum evaporation. Films were prepared under the vacuum of 10−6 Torr. The structural studies have been performed by the X-ray diffraction (XRD) technique. The XRD analysis of vacuum evaporated CdTe films reveals that the structure of films is polycrystalline in nature. However, the crystallinity has been improved after the CdCl2 treatment as shown by an increase of the diffraction peak intensities. This is due to the enhancement in the atomic mobility of CdTe. The optical properties of the CdTe thin films have been studied by the spectrophotometer in the 300–800 nm wavelength range. It is observed that the optical band gap energy is highly dependent on CdCl2 treatments. The optical transitions in these films are found to be direct and allowed.  相似文献   

5.
We report the preparation of copper antimony sulfide (CuSbS2) thin films by heating Sb2S3/Cu multilayer in vacuum. Sb2S3 thin film was prepared from a chemical bath containing SbCl3 and Na2S2O3 salts at room temperature (27 °C) on well cleaned glass substrates. A copper thin film was deposited on Sb2S3 film by thermal evaporation and Sb2S3/Cu layers were subjected to annealing at different conditions. Structure, morphology, optical and electrical properties of the thin films formed by varying Cu layer thickness and heating conditions were analyzed using different characterization techniques. XRD analysis showed that the thin films formed at 300 and 380 °C consist of CuSbS2 with chalcostibite structure. These thin films showed p-type conductivity and the conductivity value increased with increase in copper content. The optical band gap of CuSbS2 was evaluated as nearly 1.5 eV.  相似文献   

6.
Chemical vapor deposition (CVD) in an open tube system was employed to deposit single-phase CuGaSe2 thin films on plain and Mo-coated glass substrates. The use of HCl and ternary CuGaSe2 source material resulted in non-stoichiometric volatilization of the source material. The use of binary source materials – Cu2Se and Ga2Se3 – in combination with I2 and HCl as the respective transport agents yielded single-phase CuGaSe2 thin films while the source materials were volatilized stoichiometrically. Mo/CuGaSe2/CdS/ZnO devices were fabricated from these samples exhibiting an open-circuit voltages up to Voc=853 mV.  相似文献   

7.
A multilayer film of Mg and Ni was prepared by dc/ac magnetron sputtering and annealed below 623 K in vacuum to obtain polycrystalline Mg2Ni thin films. The phase transformation during heating process and optical switching properties of the films were investigated. The influence of the original crystalline state of Mg2Ni films on optical switching properties such as transmission, optical band gaps and the cycle times was discussed. The indirect optical band gaps of the fully hydrogenated amorphous Mg2Ni films were estimated by linear extrapolation.  相似文献   

8.
CuInSe2 and CuIn3Se5 thin films have been deposited using sodium compounds such as Na2Se and Na2S onto Corning 7059 glass substrates by the two-stage co-evaporation method. Enhanced grain growth and preferred (1 1 2) grain orientation as well as a decrease in resistivity with respect to undoped films were observed with sodium incorporation. A clear correlation between the photoluminescence spectra and the resistivity of the films was found by comparing the properties of films with and without Na incorporation. These observations suggest that compensation is reduced due to the suppression of donor-type defects by the presence of Na.  相似文献   

9.
Thin films of Cu2ZnSnS4 (CZTS), a potential candidate for absorber layer in thin film heterojunction solar cell, have been successfully deposited by spray pyrolysis technique on soda-lime glass substrates. The effect of substrate temperature on the growth of CZTS films is investigated. X-ray diffraction studies reveal that polycrystalline CZTS films with better crystallinity could be obtained for substrate temperatures in the range 643-683 K. The lattice parameters are found to be a=0.542 and c=1.085 nm. The optical band gap of films deposited at various substrate temperatures is found to lie between 1.40 and 1.45 eV. The average optical absorption coefficient is found to be >104 cm−1.  相似文献   

10.
Cerium dioxide (CeO2) thin films were prepared by spray pyrolysis using hydrated cerium chloride (CeCl3·7H2O) as source compound. The films prepared at substrate temperatures below 300°C were amorphous, while those prepared at optimal conditions (Ts=500°C,s=5 ml/min) were polycrystalline, cubic in structure, preferentially oriented along the (2 0 0) direction and exhibited a transmittance value greater than 80% in the visible range. The cyclic voltammetry study showed that films of CeO2 deposited on ITO pre-coated glass substrates were capable of charge insertion/extraction when immersed in an electrolyte of propylene carbonate with 1 M LiClO4.These films also remained fully transparent after Li+ intercalation/deintercalation.  相似文献   

11.
Thin films of (Sb2Te3)70 (Bi2Te3)30 were prepared by thermal evaporation. The composition of the film was confirmed by energy dispersive analysis (EDAX). X-ray diffraction studies showed that the film was polycrystalline with grain size of 4.39 Å and with a preferred orientation in the (0 1 5) directions. Al/((Sb2Te3)70 (Bi2Te3)30)/Al (MSM) thin film capacitors are formed and its AC and dielectric studies were carried out using a digital LCR metre at various frequencies (12 Hz–100 kHz) and temperatures (303–483 K). The dielectric constant for a film of thickness 3000 Å was found to be 86 for 1 kHz at room temperature. The temperature coefficient of capacitance (TCC) and temperature coefficient of permittivity (TCP) were estimated as 684 and 1409 ppm/K for 10 kHz at 303 K, respectively. The activation energy was estimated as 1.190 eV for frequency of 100 kHz at 303 K. The AC conductivity of the films was found to be a hopping mechanism.  相似文献   

12.
Undoped MnO2 thin films have been prepared by a modified spray pyrolysis technique under various deposition conditions and the effects of different variables on electrical and optical properties have been studied in detail. It is found that substrate temperature, spray rate, solution concentration, carrier air pressure and post-deposition heat-treatment, spray outlet to substrate distance play important role in obtaining optimum films.Electrical conductivity study shows an anomaly in conductivity at a temperature 323 K and its thickness dependent resistivity follows Fuchs–Sondheimer theory. The Hall effect and thermoelectric studies indicate that the deposited sample is an n-type semiconductor. Optical study in the entire wavelength 0.3–2.5 μm range exhibits a high transmittance in the visible as well as in the near infrared. Calculation from optical data, the sample exhibits a band gap at 0.28 eV, which also supports the value obtained from the Hall effect study. These studies may be of importance for the applications of this material in energy efficient surface coating devices.  相似文献   

13.
Cu2ZnSnS4 (CZTS) thin films prepared by a non-vacuum process based on the sulfurization of precursor coatings, consisting of a sol-gel solution of Cu, Zn, and Sn, under H2S+N2 atmosphere were investigated. The structure, microstructure, and electronic properties of the CZTS thin films as well as solar cell parameters were studied in dependence on the H2S concentration. The sulfurization process was carried out at 500 °C for 1 h in an H2S+N2 mixed-gas atmosphere with H2S concentrations of 3%, 5%, 10%, and 20%. As the H2S concentration decreased from 20% to 5%, the S content of the CZTS thin films decreased. However, when the H2S concentration was decreased below 3%, the S content of the films began to increase. A CZTS thin film prepared with an H2S concentration of 3% had grains in the order of 1 μm in size, which were larger than those of films prepared at other H2S concentrations. Furthermore, the most efficient solar cell, with a conversion efficiency of 2.23%, was obtained from a sample sulfurized at an H2S concentration of 3%.  相似文献   

14.
In this article we have reported the synthesis and characterization of FeSi2 thin films. The Fe/Si thin films were obtained by electron beam evaporation. Thermal annealing was carried out at 650°C for 1 h. The formation of the β-FeSi2 layers were characterized by the X-ray diffraction method and found to be polycrystalline in nature. The structural parameters were evaluated from the XRD pattern. The possible optical transition in these films is found to be direct and allowed.  相似文献   

15.
Cu2ZnSnS4 (hereafter CZTS) thin films were successfully formed by vapor-phase sulfurization of precursors on a soda lime glass substrate (hereafter SLG) and a Mo-coated one (hereafter Mo-SLG). From the optical properties, we estimate the band-gap energy of this thin film as 1.45–1.6 eV which is quite close to the optimum value for a solar cell. By using this thin film as an absorber layer, we could fabricate a new type of thin film solar cell, which was composed of Al/ZnO:Al/CdS/CZTS/Mo-SLG. The best conversion efficiency achieved in our study was 2.62% and the highest open-circuit voltage was 735 mV. These device results are the best reported so far for CZTS.  相似文献   

16.
Polycrystalline CuIn0.7Ga0.3Se2 thin films were prepared on soda-lime glass substrates using pulsed laser deposition (PLD) with various process parameters such as laser energy, repetition rate and substrate temperature. It was confirmed that there existed a limited laser energy, i.e. less than 300 mJ, to get phase pure CIGS thin films at room temperature. Particularly, even at room temperature, distinct crystalline CIGS phase was observed in the films. Crystallinity of the films improved with increasing substrate temperature as evidenced by the decrease of FWHM from 0.65° to 0.54°. Slightly Cu-rich surface with Cu2−xSe phase was confirmed to exist by Raman spectra, depending on substrate temperature. Improved electrical properties, i.e., carrier concentration of ∼1018 cm−3 and resistivity of 10−1 Ω cm at higher substrate temperature for the optimal CIGS films are assumed to be induced by the potential contributions from highly crystallized thin films, existence of Cu2−xSe phase and diffusion of Na from substrates to films.  相似文献   

17.
A new approach has been developed to rapidly synthesize nanostructured LiMn2O4 thin films by flame spray deposition (FSD) and in situ annealing. A precursor solution of lithium acetylacetonate and manganese acetylacetonate in an organic solution was supplied through a flame spray pyrolysis (FSP) reactor. The liquid solution spray was ignited and stabilized by a premixed methane/oxygen flame ring surrounding the FSP nozzle. Thus, LiMn2O4 nanoparticles were formed by combustion and deposited onto a current collector followed by in situ annealing. Two different types of current collectors, i.e. stainless steel and aluminum coated with carbon-based primer were tested. The prepared thin films were characterized by X-ray diffraction and field-emission scanning electron microscopy. The electrochemical properties of the thin films were evaluated by cyclic voltammetry and galvanostatic cycling. The LiMn2O4 films exhibited good cyclability. Films that underwent sintering and crystal growth during in situ annealing developed more robust film structures on the current collector surface and exhibited better electrochemical performance than poorly adhered films.  相似文献   

18.
A simple close-spaced vapour transport (CSVT) system has been designed and fabricated. Copper indium diselenide (CuInSe2) thin films of wide range of thickness (4000–60000 Å) have been prepared using the fabricated CSVT system at source temperatures 713, 758 and 843 K. A detailed study on the deposition temperature has been made and the temperature profile along with the reaction kinetics is reported. The composition of the chemical constituents of the films has been determined by energy dispersive X-ray analysis. The structural characterization of the as-deposited CuInSe2 films of various thicknesses has been carried out by X-ray diffraction method. The diffractogram revealed that the CuInSe2 films are polycrystalline in nature with chalcopyrite structure. The structural parameters such as lattice constants, axial ratio, tetragonal distortion, crystallite size, dislocation density and strain have been evaluated and the results are discussed. The surface morphology of the as-deposited CuInSe2 thin films has been studied using scanning electron microscope. The transmittance characteristics of the CuInSe2 films have been studied using double beam spectrophotometer in the wavelength range 4000–15000 Å and the optical constants n and k are evaluated. The absorption coefficient has been found to be very high and is of the order of 105–106 m−1. CuInSe2 films are found to have a direct allowed transition and the optical band gap is found to be in the range 0.85–1.05 eV.  相似文献   

19.
CuInTe2 films grown by stepwise flash evaporation onto glass and silicon substrates held at 573 K were studied using X-ray diffraction (XRD), transmission electron microscopy (TEM), Rutherford backscattering spectrometry (RBS) and Raman spectroscopy. XRD and TEM studies showed the formation of single-phase polycrystalline CuInTe2. Results of the RBS measurements showed the films to be near-stoichiometric and negligible diffusion of elements across the CuInTe2/Si interface. Various lattice vibrational modes identified by Raman measurements were found to match well with those reported for single-crystal CuInTe2, confirming the crystalline quality of the CuInTe2 thin films.  相似文献   

20.
We report the modification of electrical properties of chemical-bath-deposited antimony sulphide (Sb2S3) thin films by thermal diffusion of carbon. Sb2S3 thin films were obtained from a chemical bath containing SbCl3 and Na2S2O3 salts at room temperature (27 °C) on glass substrates. A carbon thin film was deposited on Sb2S3 film by arc vacuum evaporation and the Sb2S3-C layer was subjected to heating at 300 °C in nitrogen atmosphere or in low vacuum for 30 min. The value of resistivity of Sb2S3 thin films was substantially reduced from 108 Ω cm for undoped condition to 102 Ω cm for doped thin films. The doped films, Sb2S3:C, retained the orthogonal stibnite structure and the optical band gap energy in comparison with that of undoped Sb2S3 thin films. By varying the carbon content (wt%) the electrical resistivity of Sb2S3 can be controlled in order to make it suitable for various opto-electronic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号