首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The activation of factor VIII (fVIII) by thrombin is associated with heavy chain cleavages at Arg372 and Arg740 and light chain cleavage at Arg1689. In a defined, plasma-free assay of fVIII activation and at physiological ionic strength and pH, heparin inhibited the rate of activation of either human or porcine fVIII by thrombin in either the presence or absence of von Willebrand factor (vWf). The inhibitory effect of heparin was associated with inhibition of all three thrombin-catalyzed bond cleavages. At plasma concentrations of fVIII (approximately 1 nM) and vWf (approximately 35 nM), the rate of fVIII activation was inhibited by 50% at approximately 0.1 unit/ml heparin, which is below the normal range of heparin concentrations in plasma during therapeutic anticoagulation (0.2-0.7 unit/ml). We propose that, in addition to catalyzing the inhibition of thrombin and other intrinsic pathway coagulation proteases by antithrombin, heparin functions as an anticoagulant by direct inhibition of the activation of the fVIII-vWf complex by thrombin.  相似文献   

2.
Antibodies directed to the A2 domain of factor VIII (fVIII) are usually an important component of the polyclonal response in patients who have clinically significant inhibitory antibodies to fVIII. A major determinant of the A2 epitope has been located by homolog scanning mutagenesis using recombinant hybrid human/porcine fVIII molecules to a sequence bounded by Arg484-Ile508 (Healey, J. F. , Lubin, I. M., Nakai, H., Saenko, E. L., Hoyer, L. W., Scandella, D. , and Lollar, P. (1995) J. Biol. Chem. 270, 14505-14509). Within this region, human residues Arg484, Pro485, Tyr487, Ser488, Arg489, Pro492, Val495, Phe501, and Ile508 differ from porcine fVIII. We stably expressed in mammalian cells nine active B-domainless human fVIII molecules containing single alanine substitutions at these sites. Their inhibition by a murine anti-A2 monoclonal antibody, monoclonal antibody (mAb) 413, and by three A2-specific alloimmune and two A2-specific autoimmune human inhibitor plasmas was measured by the Bethesda assay. The inhibition of Arg484 --> Ala, Tyr487 --> Ala, Arg489 --> Ala, and Arg492 --> Ala by mAb413 was reduced by greater than 90% compared with wild-type, B-domainless human fVIII. mAb413 inhibited the most severely affected mutant, Arg489 --> Ala, 0.01% as well as wild-type fVIII. For all five patient plasmas, the Tyr487 --> Ala mutant displayed the greatest reduction in inhibition. The inhibition of the Tyr487 --> Ala mutant by these antibodies ranged from 10% to 20% that of wild-type fVIII. The inhibition of the Ser488 --> Ala, Arg489 --> Ala, Pro492 --> Ala, Val495 --> Ala, Phe501 --> Ala, and Ile508 --> Ala mutants by most of the plasmas also was significantly reduced. In contrast, the Arg484 --> Ala and Pro485 --> Ala mutants were relatively unaffected. Thus, although mAb413 binds to the same region as human A2 inhibitors, it recognizes a different set of amino acid side chains. The side chains recognized by human A2 inhibitors appear to be similar, despite the differing immune settings that give rise to fVIII alloantibodies and autoantibodies.  相似文献   

3.
The single-chain procofactor factor V is cleaved by thrombin (FVaIIa) at Arg709, Arg1018, and Arg1545 and by a variety of other proteases to generate a cofactor species with various levels of cofactor function. Having demonstrated previously that monocyte-bound forms of cathepsin G and elastase cleave and activate factor V, studies were initiated here using purified proteins to probe factor V structure/function. Electrophoretic, Western blotting, and amino-terminal sequence analyses revealed that cathepsin G cleaves factor V at several sites (Phe1031, Leu1447, Tyr1518, and potentially Tyr696), ultimately generating an amino-terminal 103 kDa heavy chain and a carboxy-terminal 80 kDa light chain (FVaCG). Elastase also cleaves factor V at several sites (Ile708, Ile819, Ile1484, and potentially Thr678), generating a cofactor species, FVaHNE, with an amino-terminal 102 kDa heavy chain and a carboxy-terminal 90 kDa light chain. Incubation of FVaIIa with either cathepsin G or elastase resulted in cleavage within the heavy chain, releasing peptides of approximately 2000 and approximately 3000 Da, respectively, generating FVaIIa/CG and FVaIIa/HNE. The functional activity of each cofactor species was assessed either by clotting assay or by employing a purified prothrombinase assay using saturating amounts of factor Xa. Significant differences in cofactor function were observed between the two assay systems. Whereas FVaIIa, FVaCG, FVaIIa/CG, FVaHNE, and FVaIIa/HNE all had similar cofactor activities in the purified prothrombinase assay, FVaCG and FVaHNE had no cofactor activity in the clotting-based assay, and FVaIIa/CG and FVaIIa/HNE had approximately 30-35% clotting activity relative to FVaIIa. These disparate results led us to examine the binding interactions of these cofactors with the various prothrombinase components. Kinetic analyses indicated that FVaIIa (Kd(app) = 0.096 nM), FVaIIa/CG (Kd(app) = 0.244 nM), and FVaIIa/HNE (Kd(app) = 0.137 nM) bound to membrane-bound factor Xa much more effectively than FVaCG (Kd(app) = 1.46 nM) and FVaHNE (Kd(app) = 0.818 nM). In contrast, studies of the activated protein C (APC)-catalyzed inactivation of each of the factor V(a) species indicated that they were all equivalent substrates for APC with no differences observed in the rate of inactivation or the cleavage mechanism, suggesting that APC interacts with the light chain at a site distinct from factor Xa. The Km values for prothrombin, as well as the kcat values for each of the FV(a) species, were all similar (approximately 0.25 microM and approximately 1900 min-1). In addition, kinetic analyses indicated that whereas FVaCG and FVaHNE exhibited a slightly reduced ability to interact with phospholipid vesicles (approximately 2-3-fold), the remaining FV(a) species assembled equally well on this surface. Collectively, these data indicate that FVaCG and FVaHNE have a diminished capacity to support factor Xa binding; however, cleavage at Arg1545 and removal of the extended B-domain in these cofactors restore near-total factor Xa binding. Thus, cleavage at Arg1545 optimizes cofactor function within prothrombinase by facilitating factor Xa binding to membrane-bound FVa.  相似文献   

4.
Binding of factor Xa to human umbilical vein endothelial cells (HUVEC) is contributed by effector cell protease receptor-1 (EPR-1). The structural requirements of this recognition were investigated. Factor Xa or catalytically inactive 5-dimethylaminonaphthalene-1sulfonyl (dansyl) Glu-Gly-Arg-(DEGR)-chloromethylketone-factor Xa bound indistinguishably to HUVEC and EPR-1 transfectants, and inhibited equally well the binding of 125I-factor Xa to these cells. Similarly, factor Xa active site inhibitors TAP or NAP5 did not reduce ligand binding to EPR-1. A factor X peptide duplicating the inter-EGF sequence Leu83-Phe84-Thr85-Arg86-Lys87-Leu88- (Gly) inhibited factor V/Va-independent prothrombin activation by HUVEC and blocked binding of 125I-factor Xa to these cells in a dose-dependent manner (IC50 approximately 20-40 microM). In contrast, none of the other factor X peptides tested or a control peptide with the inter-EGF sequence in scrambled order was effective. A recombinant chimeric molecule expressing the factor X sequence Leu83-Leu88 within a factor IX backbone inhibited binding of 125I-factor Xa to HUVEC and EPR-1 transfectants in a dose-dependent fashion, while recombinant factor IX or plasma IXa had no effect. An antibody generated against the factor X peptide 83-88, and designated JC15, inhibited 125I-factor Xa binding to HUVEC. The JC15 antibody bound to factor Xa and the recombinant IX/X83-88 chimera in a concentration dependent manner, while no specific reactivity with factors X or IXa was observed. Furthermore, binding of 125I-factor Xa to immobilized JC15 was inhibited by molar excess of unlabeled factor Xa, but not by comparable concentrations of factors X or IXa. These findings identify the inter-EGF sequence Leu83-Leu88 in factor Xa as a novel recognition site for EPR-1, and suggest its potential role as a protease activation-dependent neo-epitope. This interacting motif may help elucidate the contribution of factor Xa to cellular assembly of coagulation and vascular injury.  相似文献   

5.
Factor V (FV) is a large (2,196 amino acids) nonenzymatic cofactor in the coagulation cascade with a domain organization (A1-A2-B-A3-C1-C2) similar to the one of factor VIII (FVIII). FV is activated to factor Va (FVa) by thrombin, which cleaves away the B domain leaving a heterodimeric structure composed of a heavy chain (A1-A2) and a light chain (A3-C1-C2). Activated protein C (APC), together with its cofactor protein S (PS), inhibits the coagulation cascade via limited proteolysis of FVa and FVIIIa (APC cleaves FVa at residues R306, R506, and R679). The A domains of FV and FVIII share important sequence identity with the plasma copper-binding protein ceruloplasmin (CP). The X-ray structure of CP and theoretical models for FVIII have been recently reported. This information allowed us to build a theoretical model (994 residues) for the A domains of human FV/FVa (residues 1-656 and 1546-1883). Structural analysis of the FV model indicates that: (a) the three A domains are arranged in a triangular fashion as in the case of CP and the organization of these domains should remain essentially the same before and after activation; (b) a Type II copper ion is located at the A1-A3 interface; (c) residues R306 and R506 (cleavage sites for APC) are both solvent exposed; (d) residues 1667-1765 within the A3 domain, expected to interact with the membrane, are essentially buried; (e) APC does not bind to FVa residues 1865-1874. Several other features of factor V/Va, like the R506Q and A221V mutations; factor Xa (FXa) and human neutrophil elastase (HNE) cleavages; protein S, prothrombin and FXa binding, are also investigated.  相似文献   

6.
We studied the interaction of factor X activation peptide (XAP) with factor IXa and factor Xa and the effect of XAP on factor IXa-catalyzed activation of factor X. XAP associated with factor Xa in the presence of 5 mM Ca2+ was dissociated from factor Xa by gel chromatography using Ultrogel AcA54 in 5 mM EDTA, or in 8 M urea-0.1% SDS. An exogenous isolated XAP inhibited the factor IXa-catalyzed factor X activation both in the presence and absence of factor VIIIa. 4-Amidinophenylmethylsulfonyl (aPMS)-factor Xa independent of XAP also inhibited the factor X activation more effectively than XAP alone in the presence of factor VIIIa. However, aPMS-factor Xa independent of XAP hardly inhibited the factor X activation in the absence of factor VIIIa. The binding of 125I-labeled factor X to the aPMS-factor IXa fixed to a microwell plate was inhibited by unlabeled factor X or XAP, but not by aPMS-factor Xa with or without XAP. Factor IXa directly bound to XAP and aPMS-factor Xa with XAP, but did not bind to aPMS-factor Xa without XAP. These findings suggest that the region of XAP in factor X directly interacts with factor IXa, and factor Xa region other than XAP interacts with factor VIIIa. Desialation or deletion of N-linked carbohydrates of XAP reduced the inhibitory activity of XAP for the factor X activation by factor IXa to approximately 50% of that of the intact XAP. This suggests that the sialic acids in the carbohydrate chains of the XAP region partly contribute to the interaction with factor IXa during its activation.  相似文献   

7.
Upon incubation of human prothrombin with factor Xa bound to human umbilical vein endothelial cells (HUVEC) (0.5-0.6 fmol factor Xa/10(5) cells), three bonds at Arg273-Thr274, Arg286-Thr287, and Arg322-Ile323 were cleaved, yielding and releasing fragment 1-2 and a degraded form of alpha-thrombin, but not meizothrombin, into the fluid phase. The apparent Km for prothrombin and the Vmax were 0.25 +/- 0.07 microM and 210 +/- 40 fmol thrombin/min/10(5) cells, respectively. For the maximally bound factor Xa, the calculated catalytic efficiency (kcat = 6-7 s-1) was similar to those reported for the prothrombinase complex formed on the phospholipid vesicles and natural membrane surfaces. The prothrombin derivatives lacking the 10 gamma-carboxyglutamic acid (Gla) residues-containing region were not activated by the cell-bound factor Xa. The activation rate of prothrombins with Gla residues variously modified to gamma-methyleneglutamic acids was reduced in accordance with the number of modified residues. For the inhibition of prothrombin activation, intact fragment 1 was needed; the Gla-domain alone did not affect the reaction. Binding of monoclonal antibodies to the region of 1-48 or the kringle 1 region of prothrombin also interfered with the prothrombin activation. Prothrombin activation on the surface of HUVEC appeared to proceed via formation of a cellular prothrombinase complex composed of phospholipids of HUVEC membrane, endogenous factor Va, factor Xa, and prothrombin. The Gla-domain and kringle 1 regions are indispensable for the molecule to serve as an effective substrate for the cell-bound factor Xa.  相似文献   

8.
Inhibitory antibodies directed against factor VIII develop in a substantial number of patients with hemophilia A as a consequence of factor VIII replacement therapy. These antibodies usually recognize discrete epitopes within the A2 and/or the C2 domains of factor VIII. Here, we have characterized the antibodies present in the plasma of a patient affected by severe hemophilia A. The antibodies reacted readily with the metabolically labeled factor VIII light chain and fragments thereof when analyzed by immunoprecipitation. The inhibitory activity could be neutralized by the complete light chain, whereas only slight neutralization occurred with a fragment comprising the isolated C2 domain. Binding of the majority of antibodies to in vitro synthesized factor VIII fragments was dependent on the presence of amino acid residues Gln1778-Met1823, a region known to contain a factor IXa binding site. Functional characterization showed that purified IgG from the patient's serum inhibited binding of factor IXa to immobilized factor VIII light chain in a dose-dependent manner. These data indicate that human alloantibodies may inhibit factor VIII activity by interfering with factor IXa-factor VIIIa complex assembly.  相似文献   

9.
A series of 100 tripeptide fluorogenic substrates has been synthesized. These substrates contain Arg in the P1 position, various amino acids in the P2 and P3 positions, and different 6-amino-1-naphthalenesulfonamides (ANSN) as the detecting group (P'). The 38 compounds possessing the highest initial rates of factor VIIa hydrolysis were evaluated for substrate kinetic parameters in the presence and absence of tissue factor (TF) and by factor Xa. Most of these substrates had a higher kcat/KM (keff) value for the factor VIIa-TF complex than for factor Xa. Substitution of different amino acids in the P2 position showed that substrates with bulkier amino acids such as Leu, Pro, and Val have higher values for KM and kcat than those with smaller amino acids (Gly or Ser). The highest second-order rate constants were found for substrates with Val or Pro in the P2 position. A decrease or increase in volume of the P2 substituent (Gly, Ser, or Leu) resulted in a decrease in this constant. Substrates with the highest keff values have Phe in the P3 position. As the hydrophobicity and volume of the amino acid in the P3 position decreased, the keff was reduced. The efficiency of substrates for hydrolysis by factor VIIa was enhanced by an increase of hydrophobicity in the P' structure. TF enhanced the amidolytic activity of the "family" of 38 substrates with ANSN in the P' position on an average of 58-fold.  相似文献   

10.
In preliminary studies, the generation of thrombin in vivo was found to induce a 92% loss of functional activity of factor IX (F.IX) despite the detection by Western blotting of a product resembling activated F.IX (F.IXa) and a 25% increase in F.IX antigen levels (Hoogendoorn et al, Thromb Haemost 69:1127, 1993 [abstr]). These changes were associated with evidence of increased elastase availability. To study the possibility that these two observations were related, a detailed physical and functional characterization of the hydrolysis of purified human F.IX by human neutrophil elastase (HNE) was performed in vitro. An activated partial thromboplastin time (aPTT) clotting assay demonstrated that, although HNE eliminated the potential of F.IX to be activated, it only marginally reduced the F.IXa activity. Reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) indicated that HNE treatment of F.IX generated cleavage products of 30 and 20 kD that could not be distinguished from the respective heavy and light chain peptides that were identified in parallel studies when F.IX was activated by activated bovine F.XI (F.XIa), one of its physiological activators. In addition, nonreducing SDS-PAGE demonstrated that HNE-treated F.IX formed no complexes with antithrombin III (ATIII) in the presence of heparin. Furthermore, HNE-treated F.IX was unable to (1) bind the active site probe p-aminobenzamidine; (2) hydrolyze the synthetic peptide substrate CH3SO2-Leu-Gly-Arg-p-nitroanilide; and (3) activate human factor X (F.X). In contrast to dansyl-Glu-Gly-Arg-chloromethyl ketone (dEGR)-inactivated F.IXa, HNE-treated F.IX (0.01 to 10,000 pmol/L) failed to inhibit the clotting activity of F.IXa (10 pmol/L) in the aPTT. NH2-terminal sequencing indicated that HNE cleaved human F.IX at Thr140, Thr144, Ile164, Thr172, and Val181. The cleavages at Thr140/Thr144 and at Thr172/Val181 are both very close to the normal F.XIa alpha-(Arg145) and beta-(Arg180) cleavage sites, respectively. In summary, the results suggest that the activatability of F.IX is eliminated after cleavage by HNE and that the inability of HNE-treated F.IX to support F.IXa-like coagulant function is a consequence of improper active site formation. These in vitro observations support the possibility that increased HNE cleavage of F.IX in vivo may contribute to the disregulation of hemostasis that occurs in conditions such as disseminated intravascular coagulation (DIC).  相似文献   

11.
The carboxyl-terminal 19 amino acids of the type I alpha regulatory subunit (RI alpha) of cAMP-dependent protein kinase (PKA) were investigated to determine their contributions to cAMP selectivity. The parent RI alpha subunit contained an Ala to Thr mutation at position 334 so that it would bind both cAMP and cGMP with high affinity. Stop codons were introduced into the parent cDNA construct at positions corresponding to Val-375, Asn-372, Gln-370, and Cys-360. The purified, bacterially expressed proteins were characterized for their cAMP and cGMP dissociation properties. Site-selective cAMP analogs were used to compete against [3H]cAMP binding to the mutant RI alpha subunits to correctly assign fast and slow dissociation t1/2 values to the A and B domains. A greater than 60-fold drop in B domain t1/2 in the Asn-372-stop to Gln-370-stop transition implicated Tyr-371 as an important cAMP-binding determinant. A similar drop in [3H]cGMP t1/2 for the same transition suggested that the cGMP/cAMP selectivity was not altered. To test this further, Tyr-371 was mutated to Ala, Phe, and Arg in the parent construct. The cAMP and cGMP t1/2 values were determined, as were protein kinase activation constants (Ka) for holoenzymes formed from mutant RI alpha subunits and purified catalytic subunit. The Ka data suggested that mutation of Tyr-371 enhanced B domain cAMP selectivity. Isolated B domains containing Tyr-371-Arg or Tyr-371-Phe mutations were constructed, expressed, and purified to determine their relative inhibition constants (K'I) for cGMP vs cAMP. These data showed that B domain cAMP selectivity was minimally affected by alteration of Tyr-371. Based on these results, it is concluded that aromatic stacking is not important for determining B-domain cyclic nucleotide selectivity. It is proposed that the main function of Tyr-371 is stabilization of the B-domain cAMP-binding pocket through hydrogen bonding with Glu-324.  相似文献   

12.
Approximately 5% of hemophilia A patients have normal amounts of a dysfunctional factor VIII (FVIII) protein and are termed cross-reacting material (CRM)-positive. FVIII is a heterodimer (domain structure A1-A2-B/A3-C1-C2) that requires thrombin cleavage to elicit procoagulant activity. Thrombin-activated FVIII is a heterotrimer with the A2 subunit (amino acid residues 373 to 740) in a weak ionic interaction with the A1 and A3-C1-C2 subunits. Dissociation of the A2 subunit correlates with inactivation of FVIII. Recently, a phenotype of CRM-positive hemophilia A patients has been characterized whose plasma displays a discrepancy between their FVIII activities, where the one-stage clotting assay displays greater activity than the two-stage clotting assay. One example is a missense mutation where ARG531 has been substituted by HIS531. An FVIII cDNA construct was prepared containing the ARG531(HIS) mutation and the protein was expressed in COS-1 monkey cells by transient DNA transfection. Metabolic labeling with [35S]-methionine demonstrated that ARG531(HIS) was synthesized at an equal rate compared with FVIII wild-type (WT) but had slightly reduced antigen in the conditioned medium, suggesting a modest secretion defect. A time course of structural cleavage of ARG531(HIS) demonstrated identical thrombin cleavage sites and rates of proteolysis as FVIII WT. Similar to the patient phenotypes, ARG531(HIS) had discrepant activity as measured by a one-stage activated partial thromboplastin time (aPTT) clotting assay (36% +/- 9.6% of FVIII WT) and a variation of the two-stage assay using a chromogenic substrate (COAMATIC; 19% +/- 6.9% of FVIII WT). Partially purified FVIII WT and ARG531(HIS) proteins were subjected to functional activation by incubation with thrombin. ARG531(HIS) demonstrated significantly reduced peak activity and was completely inactivated after 30 seconds, whereas FVIII WT retained activity until 2.5 minutes after activation. Because the ARG531(HIS) missense mutation predicts a charge change to the A2 subunit, we hypothesized that the ARG531(HIS) A2 subunit could be subject to more rapid dissociation from the heterotrimer. The rate of A2 dissociation, using an optical biosensor, was determined to be fourfold faster for ARG531(HIS) compared with FVIII WT. Because the two-stage assay involves a preincubation phase before assay measurement, an increased rate of A2 dissociation would result in an increased rate of inactivation and reduced specific activity.  相似文献   

13.
The products of cleavage of bovine factor Va by activated protein C (APC) in the presence and absence of phospholipid (25% phosphatidylserine, 75% phosphatidylcholine, PCPS) were evaluated using sedimentation velocity/equilibrium methods in the analytical ultracentrifuge and by immunoprecipitation using an antibody directed against the light chain of the factor Va molecule. The molecular weight and sedimentation coefficient of the associated heavy and light chains of factor Va, 173,000 (7.9 S) is reduced to 132,000 (7.1 S) by APC cleavage at Arg505 and Arg662. Complete cleavage of the factor Va heavy chain (with APC-PCPS) at Arg505, Arg662 and Arg306 results in a drastic change in the molecular weight observed for the product. Two products are resolved with sedimentation coefficients of 3.3 and 6.3 S with estimated molecular weights of 48,000 and 114,000, respectively. Immunoprecipitation studies showed that the products of factor Va cleavage at Arg505 and Arg662 (A1A2N.A2C.LC) are mostly noncovalently associated and consequently immunoprecipitated with an antibody directed against the light chain of the factor Va molecule. In contrast, for factor Va cleaved at Arg505, Arg662, and Arg306 the precipitated complex consisted of the A1 domain (residues 1-306) and the light chain (residues 1537-2183) of factor Va (A1.LC). The fragments corresponding to residues 307-505 (A2N) and 506-662 (A2C) are found in the supernatant. The combined mass of these two products (48,000) is similar to the estimated mass of the 3.3 S fragment estimated from sedimentation velocity/equilibrium studies; while the combined mass of the 1-306 + 1537-2183 products corresponds to 114,000, the estimated mass of the 6.3 S fragment. These data lead to the conclusion that cleavages at Arg306, Arg505, and Arg662 of the factor Va molecule resulted in the dissociation of the entire A2 domain as two noncovalently associated fragments (A2N.A2C). Enzyme kinetic and light scattering data suggest that the complete inactivation of the factor Va molecule involves not only cleavage at Arg306 but also the dissociation of the A2 domain. These data also suggest that the complete APC inactivation of the factor Va molecule is analogous to the spontaneous inactivation of factor VIIIa, which occurs via the dissociation of the A2 domain.  相似文献   

14.
Structure of human des(1-45) factor Xa at 2.2 A resolution   总被引:11,自引:0,他引:11  
The structure of a large molecular fragment of factor Xa that lacks only a Gla (gamma-carboxyglutamic acid) domain (N-terminal 45 residues) has been solved by X-ray crystallography and refined at 2.2 A resolution to a crystallographic R-value of 0.168. The fragment identity was clearly established by automated Edman degradation. X-ray structure analysis confirmed the biochemical characterization and also revealed that the N-terminal epidermal growth factor (EGF)-like domain is flexibly disordered in crystals. The second EGF module, however, is positionally ordered making contacts with the catalytic domain. The overall folding of the catalytic domain is similar to that of alpha-thrombin, excluding the insertion loops of the latter with respect to simpler serine proteinases. The C-terminal arginine of the A-chain interacts in a substrate-like manner with the S1 specificity site of the active site of a crystallographically neighboring molecule. Based on this interaction and the structure of D-PheProArg methylene-thrombin, a model of the commonly used dansylGluGlyArg methylene inhibitor-factor Xa interaction is proposed. The region of factor Xa corresponding to the fibrinogen recognition site of thrombin has a reversed electrical polarity to the anion binding fibrinogen recognition site of thrombin but possesses a site similar to the Ca2+ binding site of trypsin and other serine proteinases. The structure of the C-terminal EGF domain of factor Xa is the first to be determined crystallographically. Its folding has been comprehensively compared with similar domains determined by NMR. Although the A-chain makes 44 contacts at less than 3.5 A with the catalytic domain, only 16 involve the EGF module. In addition, the A-chain makes 30 intermolecular contacts with a neighboring catalytic domain.  相似文献   

15.
Factor VIII is an important cofactor in the intrinsic activation of factor X. To function effectively as a cofactor, factor VIII must be activated. In plasma, factor VIII circulates in a complex with von Willebrand factor, and although thrombin can activate complexed factor VIII, the activation by activated factor X is inhibited by von Willebrand factor. In this study, the effect of von Willebrand factor on the generation of factor Xa by the factor IXa-VIII complex was investigated. Purified human factors VIII, IXa, and X were incubated on human umbilical vein endothelial cells or phospholipid vesicles in the presence of calcium ions, and the generation of factor Xa was followed. In the presence of von Willebrand factor, a prolonged lag-phase and a dose-dependent inhibition of factor X activation was observed. These effects were not observed when von Willebrand factor was preincubated with a monoclonal antibody directed against von Willebrand factor that blocks factor VIII binding. When factor VIII was activated with thrombin before the incubation, neither the monoclonal antibody nor von Willebrand factor had an effect on the rate of factor X activation. Preincubation of endothelial cells with the monoclonal antibody resulted in a somewhat higher rate of factor X activation. When endothelial cells from a patient with von Willebrand's disease type I were used, preincubation of the monoclonal antibody had no effect on the rate of factor X activation. We conclude that von Willebrand factor on the surface of endothelial cells can modulate the intrinsic factor X activation. This effect is greatly enhanced, however, by the addition of exogenous von Willebrand factor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The relaxing effect of coagulation factor Xa on phenylephrine-contracted rat aortic rings was compared with the effect of thrombin and trypsin. All three proteases induced a dose-dependent relaxation in the presence of an intact endothelium. EC50 values were 3 +/- 1, 24 +/- 9, and 16 +/- 1 nmol/L for thrombin, trypsin, and factor Xa, respectively. Whereas thrombin induced rapid relaxations followed by partial recontraction, trypsin and factor Xa induced slower sustained effects. Factor Xa-induced relaxations were not affected by hirudin at high concentrations (1 mumol/L) but were abolished by DX9065A, a specific inhibitor of the catalytic activity of factor Xa. Furthermore, no relaxations to factor Xa could be elicited in the presence of the NO synthase inhibitor N omega-nitro-L-arginine methyl ester (100 mumol/L), whereas relaxations were not altered in the presence of the inactive enantiomer N omega-nitro-D-arginine methyl ester (100 mumol/L). Addition of factor Xa together with thrombin induced relaxations that were larger than those induced by thrombin alone, whereas factor Xa had no additional effects on trypsin-induced relaxations. Further-more, factor Xa relaxed thrombin-desensitized aortic rings but was ineffective in trypsin-desensitized tissues. These data suggest that factor Xa acts on a cleavable endothelial receptor that induces NO release, resulting in the relaxation of precontracted rat aortic rings. Factor Xa does not act through endothelial thrombin receptors but may activate another cleavable trypsin-sensitive receptor.  相似文献   

17.
Receptor-mediated assembly of blood proteases on vascular cells maintains the hemostatic balance and initiates intracellular signal transduction. Effector cell protease receptor-1 (EPR-1) is an approximately 62-kDa vascular cell membrane receptor for the clotting protease factor Xa, participating in thrombin formation and lymphocyte activation. Here, recombinant EPR-1 fragments were engineered in the frame of intercellular adhesion molecule-1, transfected in mammalian cells, and analyzed for antibody recognition and ligand binding. Chimeric transfectants containing the EPR-1 sequence Met1-Arg60 bound the immunosuppressive anti-EPR-1 monoclonal antibody (mAb) 2E1. In contrast, transfected cells expressing the EPR-1 sequence Pro120-Ala154 were recognized by the functionally inhibitory anti-EPR-1 mAbs 9D4 and B6, bound 125I-factor Xa in a reaction quantitatively indistinguishable from that of wild-type EPR-1 transfectants, and promoted factor Xa concentration-dependent prothrombin activation in the absence of exogenous factor V/Va. Chimeric transfectants expressing the COOH terminus end of the EPR-1 extracellular domain (Ala157-Glu221) did not bind anti-EPR-1 mAbs and did not associate with factor Xa. Mutagenesis of Asn131 or Lys133 in the EPR-1 ligand recognition domain abolished factor Xa binding by 80 +/- 5.5 and 96 +/- 4%, respectively, while mutation of Lys126, Gly128, Asn129, and Asn134 was without effect. A synthetic peptide duplicating the EPR-1 sequence S123PGKPGNQNSKNEPP137 dose dependently inhibited factor V/Va-independent thrombin generation of resting endothelium (IC50 approximately 1 microM), while the adjacent EPR-1 sequence P136PKK-RERERSSHCYP150 was ineffective. These findings demonstrate that EPR-1 contains two spatially distinct functional domains implicated in lymphocyte activation (Met1-Arg60) or factor Xa binding and prothrombin activation (Pro120-Ala154). These interacting sequences may provide a novel potential target for inhibition of factor Xa-dependent vascular cell responses.  相似文献   

18.
A specific activator of blood coagulation factor X was purified from the venom of Bungarus fasciatus by gel filtration and by ion-exchange chromatography on a Mono-Q column (FPLC). It consisted of a single polypeptide chain, with a mol. wt of 70,000 in reducing and non-reducing conditions. The enzyme had an amidolytic activity towards the chromogenic substrates S-2266 and S-2302 but it did not hydrolyse S-2238, S2251 or S-2222, which are specific substrates for thrombin, plasmin and factor Xa, respectively. The enzyme activated factor X in vitro and the effect was Ca2+ dependent with a Hill coefficient of 7.9. As with physiological activators, the venom activator cleaves the heavy chain of factor X, producing the activated factor Xa alpha. The purified factor X activator from B. fasciatus venom did not activate prothrombin, nor did it cleave or clot purified fibrinogen. The amidolytic activity and the factor X activation activity of the factor X activator from B. fasciatus venom were readily inhibited by serine protease inhibitors such as diisopropyl fluorophosphate (DFP), phenylmethanesulfonyl fluoride (PMSF), benzamidine and by soybean trypsin inhibitor but not by EDTA. These observations suggest that the factor X activator from B. fasciatus venom is a serine protease. It therefore differs from those of activators obtained from Vipera russelli and Bothrops atrox venoms, which are metalloproteinases.  相似文献   

19.
In this report we describe an in vitro model of blood coagulation reactions that mimics as closely as possible the in vivo condition. Our model indicates that the tissue factor-factor VIIa complex initiates coagulation by activating small amounts of both factor IX and factor X in the environment of the tissue factor bearing cell. Factor Xa and factor IXa formed in the initial reaction then play very distinct roles in the subsequent interactions of the clotting mechanism leading to a burst of thrombin generation on the platelet surface. Our results also indicate that factor XI can be activated by thrombin in the absence of factor XII and that the function of factor XI is simply to enhance conversion of factor IX to factor IXa resulting in enhanced thrombin generation on the platelet surface.  相似文献   

20.
Flt-1 is one of two receptor tyrosine kinases through which the angiogenic factor vascular endothelial growth factor (VEGF) functions. Placenta growth factor (PlGF) is an additional ligand for Flt-1. The second immunoglobulin-like domain in the extracellular domain of Flt-1 has previously been identified as the region containing the critical ligand-binding determinants. We analyzed the contribution of charged residues within the first three domains of Flt-1 to ligand binding by alanine-scanning mutagenesis. Domain 2 residues Arg159, Glu208 and His223-Arg224 (together) affect both VEGF and PlGF binding, while Glu137, Lys171, His223, and Arg224 affect PlGF but not VEGF. Several charged residues, especially Asp187, are important in maintaining the structural integrity of domain 2. In addition, some residues in domain 3 contribute to binding (Asp231) or provide for additional discrimination between ligands (Arg280-Asp283).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号