首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glass woven fabric reinforced vinyl ester (GV) composites filled with different weight proportions of silica particles were fabricated by hand lay up technique followed by oven curing. The plane strain Mode‐I Intralaminar fracture toughness, KIC of the silica filled GV composites has been studied and the experimental results were compared with those of unfilled GV composites. The findings of the experiments showed that the fracture toughness has improved by the addition of silica particles up to 6 weight % with marginal increase of tensile properties. The silica filled and unfilled GV composites showed brittle fracture, with maximum toughness for 6 weight % silica particles. The morphology of fracture surfaces was examined by using SEM. Pulled and fractured fibers are observed on the fracture surface of GV composites evidencing fiber bridging but not in the silica filled GV composites. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

2.
Jute‐fibers‐reinforced thermoplastic composites are widely used in the automobile, packaging, and electronic industries because of their various advantages such as low cost, ease of recycling, and biodegradability. However, the applications of these kinds of composites are limited because of their unsatisfactory mechanical properties, which are caused by the poor interfacial compatibility between jute fibers and the thermoplastic matrix. In this work, four methods, including (i) alkali treatment, (ii) alkali and silane treatment, (iii) alkali and (maleic anhydride)‐polypropylene (MAPP) treatment, and (iv) alkali, silane, and MAPP treatment (ASMT) were used to treat jute fibers and improve the interfacial adhesion of jute‐fiber‐reinforced recycled polypropylene composites (JRPCS). The mechanical properties and impact fracture surfaces of the composites were observed, and their fracture mechanism was analyzed. The results showed that ASMT composites possessed the optimum comprehensive mechanical properties. When the weight fraction of jute fibers was 15%, the tensile strength and impact toughness were increased by 46 and 36%, respectively, compared to those of untreated composites. The strongest interfacial adhesion between jute fibers and recycled polypropylene was obtained for ASMT composites. The fracture styles of this kind of composite included fiber breakage, fiber pull‐out, and interfacial debonding. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers.  相似文献   

3.
Sisal fibers were added to wood particle composites to enhance their toughness. The selected matrix was a commercial styrene diluted unsaturated polyester thermoset resin. Fracture tests were carried out using single‐edge notched beam geometries. Stiffness, strength, critical stress intensity factor KIQ, and work of fracture Wf of notched specimens were determined. The incorporation of sisal fibers into wood particle composites significantly changed the fracture mode of the resulting hybrid composite. For the neat matrix and the wood particle composites, once the maximum load was reached, the crack propagated in a catastrophic way. For hybrid composites, fiber bridging and pull‐out were the mechanisms causing increased crack growth resistance. Addition of a 7% wt of sisal fibers almost doubled the KIQ value of a composite containing 12% wt of woodflour. Moreover, the Wf increased almost 10‐fold, for the same sample. In general, the two composite toughness parameters KIQ and Wf increased when the fraction of sisal fibers was increased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1982–1987, 2006  相似文献   

4.
Mullite fiber‐reinforced mullite matrix (Muf/Mu) composites were fabricated via the solgel process. Prior to the solgel process, SiC coatings were deposited on the fibers by the chemical vapor deposition (CVD) process. Effects of the SiC coatings on the mechanical and dielectric properties of the composites were investigated. The results show that the composites with SiC interphases exhibit evident toughened fracture behavior, and their flexural strength is about 2.37 times that of the as‐received composites. Besides, the complex permittivity of the composites with SiC interphases at X‐band is also increased remarkably due to the existence of carbon in the SiC interphases.  相似文献   

5.
Jute fibers were treated with 5% NaOH solution for 4 and 8 h, respectively, to study the mechanical and impact fatigue properties of jute‐reinforced vinylester resin matrix composites. Mechanical properties were enhanced in case of fiber composites treated for 4 h, where improved interfacial bonding (as evident from scanning electron microscopy [SEM]) and increased fiber strength properties contributed effectively in load transfer from the matrix to the fiber; but their superior mechanical property was not retained with fatigue, as they showed poor impact fatigue behavior. The fracture surfaces produced under a three‐point bend test and repeated impact loading were examined under SEM to study the nature of failure in the composites. In case of untreated fiber composites, interfacial debonding and extensive fiber pullout were observed, which lowered the mechanical property of the composites but improved their impact fatigue behavior. In composites treated for 4 h under repeated impact loading, interfacial debonding occurred, followed by fiber breakage, producing a sawlike structure at the fracture surface, which lowered the fatigue resistance property of the composites. The composites with fibers treated with alkali for 8 h showed maximum impact fatigue resistance. Here, interfacial debonding was at a minimum, and the fibers, being much stronger and stiffer owing to their increased crystallinity, suffered catastrophic fracture along with some microfibrillar pullout (as evident from the SEM micrographs), absorbing a lot of energy in the process, which increased the fatigue resistance property of the composites. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2588–2593, 2002  相似文献   

6.
In order to design new fatigue‐resistant composites, the underlying fatigue damage mechanisms must be characterized and the controlling microstructural properties should be identified. The fatigue‐damage mechanisms of a unidirectional carbon fiber–reinforced epoxy has been studied under tension–tension loading. A ubiquitous form of damage was one or a few planar fiber breaks from which debonds or shear yield zones grew in the longitudinal direction during fatigue cycling. This leads to a change in stress profile of the neighboring fibers, and an increase in failure probability of these fibers. The breakage of fibers in the composite is controlled by the fiber strength distribution. The interaction between the fiber strength distribution and debond propagation leading to further fiber breakage was investigated by a numerical simulation. It was found that a wider distribution of fiber strength and a higher debond rate lead to more distributed damage and a higher fracture toughness. Implications to fatigue life behavior are discussed, with reference to constituent microstructure. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 457–474, 2000  相似文献   

7.
The study presents the results of the study on porous composite biomaterials obtained using lyophilization method based on polymer solutions: chitosan solution, sodium alginate solution, or polylactide solution, and ZnO‐doped bioglass from CaO‐SiO2‐P2O5 system. The properties of zinc ions were used, which have bactericidal, immune‐stimulating, and tissue‐regenerating functions in the organism. The effects of the polymer type, granulation, and bioglass amount, as well as the amount of solvent on composite microstructure, were studied. SEM‐EDS technique was used to visualize and describe the surface results occurring after incubation of composite in the Simulated Body Fluid (SBF). The selected method of preparation, used substrates, and the process conditions resulted in porous composites of the open, connected pore structure. It was proved that composite microstructure may be controlled by the appropriately selected amount of bioglass in relation to the polymer and its appropriate grain sizes. The morphology of the obtained composites is also affected by the amount of the solvent in lyophilizated dispersions. It was proved that bioactivity in composite material is induced by bioglass because after SBF incubation the surface layer is enriched with Ca and P, what may lead to a gradual formation of apatite layer. The obtained results enabled selection of the composites for further in vitro studies concerning cytotoxicity and antibacterial activity.  相似文献   

8.
Mixing of polyamide 6 (PA 6) and polyamide 66 (PA 66) is integrated in the trend of development of new and improved materials by combination of different polymers and some reinforcing materials to polymer composites. The specific polymer composite PA 6/PA 66 reinforced with short glass‐fibers combines the good coloring of PA 6, and the small moisture absorption of PA 66. Technical applications of PA 6/PA 66 composites are mainly used in the automotive industry. Specific requirements of this industry lead to the necessity to optimize the material resistance against crack propagation of the PA 6/PA 66 composites, using mechanical and fracture mechanical methods. So, the present investigations focus on fracture mechanics toughness optimization of the PA 6/PA 66 composites, including unstable and stable crack growth. The aim of this toughness optimization is to find out the optimal mixing ratio of PA 6/PA 66. Applications of PA 6/PA 66 in the automotive industry and specific client wishes are the main reasons for black‐coloring of the PA materials. The influence of several black‐colorants (carbon black, nigrosine, spinel, iron oxide) on mechanical and fracture mechanical properties of the PA composites is also investigated using fracture mechanical methods. As experimental fracture mechanical method, preferentially, the instrumented Charpy impact test (ICIT) and the new cut method to determine the stable crack growth of glass‐fiber reinforced materials was used. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
It has been found that nano‐ or microsized inorganic particles in general enhance the tribological properties of polymer materials. In the present study, 5 vol % nano‐TiO2 or micro‐CaSiO3 was introduced into a polyetherimide (PEI) matrix composite, which was filled additionally with short carbon fibers (SCF) and graphite flakes. The influence of these inorganic particles on the sliding behavior was investigated with a pin‐on‐disc testing rig at room temperature and 150°C. Experimental results showed that both particles could reduce the wear rate and the frictional coefficient (μ) of the PEI composites under the applied testing conditions. At room temperature, the microparticles‐filled composites exhibited a lower wear rate and μ, while the nano‐TiO2‐filled composites possessed the lowest wear rate and μ at elevated temperature. Enhancement in tribological properties with the addition of the nano‐particles was attributed to the formation of transfer layers on both sliding surfaces together with the reinforcing effect. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1678–1686, 2006  相似文献   

10.
The overall mechanical performance of glass–carbon hybrid fibers reinforced epoxy composites depends heavily upon fiber–matrix interfacial properties and the service temperatures. Fiber‐bundle pull‐out tests of glass (GF) and/or carbon fiber (CF) reinforced epoxy composites were carried out at room and elevated temperatures. Graphene nanoplatelets were added in the interfacial region to investigate their influence on the interfacial shear strength (IFSS). Results show that IFSS of specimens with fiber‐bundle number ratio of GF:CF = 1:2 is the largest among the hybrid composites, and a positive hybridization effect is found at elevated temperatures. IFSS of all the specimens decreases with the increasing of test temperatures, while the toughness shows a contrary tendency. As verified by scanning electron microscopy observations, graphene nanoplatelets on fiber surface could enhance the IFSS of pure glass/carbon and hybrid fibers reinforced epoxy composites at higher temperatures significantly. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46263.  相似文献   

11.
The relationship between the postcuring conditions and fracture toughness on three silica particulate‐filled epoxy composites was investigated. The glass transition temperature, Tg, and the fragility parameter, m, derived from the thermo‐viscoelasticity, were used to characterize the composites, which were postcured under various conditions. The glass transition temperature and fragility both depended on both of the curing conditions and the volume fraction of silica particles. The glass transition temperature increased with the postcuring time and temperature, while the fragility generally decreased as the volume fraction increased. There was no direct correlation between the glass transition temperature and fragility. The fracture toughness depended on both the glass transition temperature and fragility. The composites with a high glass transition temperature and low fragility had high fracture toughness. These results indicate that the glass transition temperature and fragility are useful parameters for estimating the fracture toughness of the silica particulate‐filled epoxy composites. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2261–2265, 2002  相似文献   

12.
In recent years, three‐dimensionally (3D) braided composites have attracted a great deal of attention because of their high‐impact damage tolerance and fatigue life, superior fracture toughness, and so forth, and have been used in aeronautics, military, and transportation. These advantages make them strong candidates for osteosynthesis devices. In this study, 3D braided carbon fiber–epoxy (C3D/EP) composites were produced via a simple vacuum impregnation technique. The load‐deflection curve, mechanical properties, and influence of fiber volume fraction, braiding angle, and axial reinforcing fibers were examined to determine their suitability for internal fixation devices. It is found that the C3D/EP composites have excellent toughness and do not show brittleness when fractured because of their relatively high void content. The flexural, shear, and impact strengths of the C3D/EP composites are excellent. It was shown that a C3D/EP composite with a stiffness similar to load‐bearing bones can be made while maintaining enough strength. It is concluded that a relatively higher void content and braiding angle is more suitable for the C3D/EP composites from the viewpoint of requirements of fracture fixation materials. The moisture absorption behavior and changes in mechanical properties caused by moisture uptake were evaluated. Results show that absorbed moisture slightly decreases mechanical properties of the C3D/EP composites. Contrary to the unreinforced epoxy, the moisture absorption behavior of the C3D/EP composites cannot be described with Fick's law of diffusion, probably because of the presence of voids and/or 3D fiber structure. The exact mechanisms should be proposed in further investigations. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1031–1039, 2002  相似文献   

13.
Sisal fiber‐reinforced epoxy composites having three different fiber orientations, namely LL, LT, TT mentioned in the text were prepared and tested for their high stress abrasive wear behavior. Effect of fiber orientation, sliding distance, and load on abrasive wear of sisal–epoxy composites have been determined. Wear data of composites have been compared with the pure epoxy. Incorporation of fibers decreases the wear rate of epoxy resin, which varies with the fiber orientation. Wear rate in case of TT composite is found minimum as compared to other two composites. Wear rate follows the following trend, WTT < WLT < WLL. Owing to minimum exposed area of fiber to the sliding asperities, lowest wear rate occurs in the case of TT composite. Increase of load and sliding distance increases the wear volume in all the composites, because of the progressive loss of material. Wear mechanism has been discussed by using SEM micrographs of the worn surfaces. POLYM. COMPOS., 28:437–441, 2007. © 2007 Society of Plastics Engineers.  相似文献   

14.
Micrometer and nanometer TiO2 particle‐filled poly(phthalazine ether sulfone ketone) (PPESK) composites with various filler volume fractions from 0.5 to 7.5 vol % were prepared by heating compression molding. The friction and wear behaviors of the PPESK composites were evaluated using the block‐on‐ring test rig by sliding PPESK‐based composite blocks against a mild carbon steel ring under dry friction conditions. The wear debris and the worn surfaces of the PPESK composites filled with micrometer and nanometer TiO2 particles were investigated by using a scanning electron microscope (SEM), while the structures of PPESK composites and wear debris were analyzed with IR spectra. Experimental results show that antiwear properties of the PPESK composites can be improved greatly by filling nanometer TiO2 particles, and the friction coefficient decreases when the filler volume fraction is below 2.5%, but when the filler volume fraction is above 2.5% the friction coefficient increases gradually with increasing filler volume fraction. In the case of micrometer TiO2 filler, wear rates increase with increasing filler volume fractions under identical test conditions, and the friction coefficients are less sensitive to the filler volume fraction. It was also found that the wear mechanism of micrometer TiO2 particle‐filled PPESK is mainly severe adhesion and abrasive wear, while that of nanometer TiO2 particle‐filled PPESK is mainly slight abrasive wear. In the former case, there are no transfer film formed on the surface of the counterpart steel, and wear debris are in the form of long and large ribbon. While in the latter case, the wear debris was granule and their size was about 10 μm. In case of 1 vol % nanometer TiO2 particle‐filled PPESK composites, the transfer film was fairly thinner and smoother, and the transfer film provided better coverage on the surface of steel ring, while that of 7.5 vol % was thicker and discrete. These account for the different friction and wear behavior of micrometer and nanometer TiO2 particle‐filled PPESK composite. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 906–914, 2004  相似文献   

15.
Polyamide 6 (PA6)/maleated ethylene–propylene–diene terpolymer rubber/nano calcium carbonate ternary composites were prepared. The effect of the compounding route on the morphology, toughness, and fracture behavior of the ternary composites were investigated by scanning electron microscopy, Charpy impact testing, and essential work of fracture (EWF) testing. The construction of sandbag microstructure particles in PA6 matrix was crucial to the toughness of the ternary composites. The Charpy impact strength and the specific essential work of fracture (we) of the ternary composites with a sandbag microstructure were 137.9 and 71.4% higher, respectively, than those of the ordinary ternary composites with a separated dispersion microstructure. The observation of the fracture surface after EWF testing indicated that the improvement of we was attributed to the sandbag microstructure particles; this structure was more effective for resisting the growth of cracks; meanwhile, the influence of the amount of fibrillation on the nonspecific essential work of fracture, including the nonspecific essential work of fracture before yielding and that in the necking–tearing stage, was insignificant. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
Polyimide composites reinforced with short‐cut fibers such as carbon, glass, and quartz fibers were fabricated by the polymerization of monomer reactants process. The mechanical properties of the composites with different fiber contents were evaluated. The friction and wear properties of the polyimide and its composites were investigated under dry‐sliding and water‐lubricated conditions. The results indicated that the short‐carbon‐fiber‐reinforced polyimide composites had better tensile and flexural strengths and improved tribological properties in comparison with glass‐fiber‐ and quartz‐fiber‐reinforced polyimide composites. The incorporation of short carbon fibers into the polyimide contributed to decreases in the friction coefficient and wear rate under both dry and water‐lubricated conditions and especially under water lubrication because of the boundary lubrication effect of water. The polyimide and its composites were characterized by plastic deformation, microcracking, and spalling under both dry and water‐lubricated conditions, which were significantly abated under the water‐lubricated condition. The glass and quartz fibers were easily abraded and broken; the broken fibers transferred to the mating metal surface and increased the surface roughness of mating stainless steel, which led to the wear rate increasing for the glass‐fiber‐ and quartz‐fiber‐reinforced polyimide composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

17.
A fracture mechanics analysis based on the J‐integral method was adopted to determine the resistance of composites with various concentrations of wood‐flour and ethylene acrylate copolymer (EAC) to crack initiation (Jin) and complete fracture (Jf). The Jin and Jf energies of unmodified poly(lactic acid) (PLA)/wood‐flour composites showed the deleterious effect of incorporating wood fibers into the plastic matrix by significantly decreasing the fracture toughness of PLA as the wood‐flour content increased. The reduced fracture toughness of the matrix induced by adding brittle wood‐flour into PLA was well recovered by impact modification of the composites with EAC. Microscopic morphological studies revealed that the major mechanisms of toughening were through the EAC existing as separate domains in the bulk matrix of the composites which tended to act as stress concentrators that initiated local yielding of the matrix around crack tips and enhanced the toughness of the composites. © 2012 Society of Chemical Industry  相似文献   

18.
The long‐carbon‐fiber‐reinforced polyamide‐6/nickel powder composites were designed as electromagnetic interference (EMI) shielding materials and then were prepared through the joint processing of melt blending and thermoplastic pultrusion. The obtained composites show high conductivity and permittivity as well as a high dielectric loss with co‐addition of carbon fiber and nickel powders, which makes the resulting composites a higher level of shielding effectiveness due to the combination of conductive and magnetic fillers. The composites are capable of shielding mainly through absorption rather than reflection. On the other hand, the composites achieved significant improvements in tensile, flexural, and impact strength due to the superiority of the long‐carbon‐fiber‐reinforced technique. The residual fiber length in the injection‐molded specimens is greatly superior to the critical one predicted by the Kelly–Tyson model. This takes full advantage of the strength of the reinforcing fiber itself, thus leading to a promising reinforcement effect. The enhancement of impact toughness is due to the energy dissipation by fiber fracture as a result of long fiber effect. The morphologic investigation indicated that the fiber fracture and fiber pullout concurred on the impact and tensile fracture surfaces, and the former preceded the latter. Highlighted with both good EMI shielding properties and excellent mechanical performance, the composites designed by this work exhibit potential applications for the automotive, electronic, aerospace, and military industries. POLYM. COMPOS., 37:2705–2718, 2016. © 2015 Society of Plastics Engineers  相似文献   

19.
Low‐density polyethylene (LDPE)‐coated sisal fiber prepreg was prepared by using solution coating process. These coated fiber prepregs were consolidated to make composites having different weight fraction of sisal fibers in a hot compression‐molding machine. This experimental study reveals that higher loading of sisal fiber up to 57wt% in LDPE–sisal composites is possible by this technique. Mechanical and abrasive wear characteristics of these composites were determined. The tensile strength of composites increased with the increase in sisal fiber concentration. Coating thickness of LDPE was varied by changing the viscosity of LDPE–xylene solution that manifested to different weight fraction of fiber in sisal–LDPE composites. Mechanical, dynamic mechanical, and abrasive wear characteristics of these composites were determined. The tensile strength and modulus of sisal composites reached to 17.4 and 265 MPa, respectively, as compared to 7.1 and 33MPa of LDPE. Storage modulus of sisal composites LD57 reached to 2.7 × 109 MPa at 40°C as compared to 8.1 × 108 MPa of LDPE. Abrasive wear properties of LDPE and its composites were determined under multi‐pass mode; pure LDPE showed minimum specific wear rate. The specific wear rate of composites decreased with the sliding distance. Increase of coated sisal fiber content increased the specific wear rate at all the sliding distances, which has been explained on the basis of worn surface microstructures observed by using SEM. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

20.
Natural fiber‐based thermoplastic composites are generally lower in strength performance compared to thermoset composites. However, they have the advantage of design flexibility and recycling possibilities. Hybridization with small amounts of synthetic fibers makes these natural fiber composites more suitable for technical applications such as automotive interior parts. Hemp fiber is one of the important lignocellulosic bast fiber and has been used as reinforcement for industrial applications. This study focused on the performance of injection‐molded short hemp fiber and hemp/glass fiber hybrid polypropylene composites. Results showed that hybridization with glass fiber enhanced the performance properties. A value of 101 MPa for flexural strength and 5.5 GPa for the flexural modulus is achieved from a hybrid composite containing 25 wt % of hemp and 15 wt % of glass. Notched Izod impact strength of the hybrid composites exhibited great enhancement (34%). Analysis of fiber length distribution in the composite and fracture surface was performed to study the fiber breakage and fracture mechanism. Thermal properties and resistance to water absorption properties of the hemp fiber composites were improved by hybridization with glass fibers. Overall studies indicated that the short hemp/glass fiber hybrid polypropylene composites are promising candidates for structural applications where high stiffness and thermal resistance is required. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2432–2441, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号