首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 264 毫秒
1.
A widely adopted approach to form matched seals in metals having high coefficient of thermal expansion (CTE), e.g. stainless steel, is the use of high CTE glass‐ceramics. With the nucleation and growth of Cristobalite as the main high‐expansion crystalline phase, the CTE of recrystallizable lithium silicate Li2O–SiO2–Al2O3–K2O–B2O3–P2O5–ZnO glass‐ceramic can approach 18 ppm/°C, matching closely to the 18 ppm/°C–20 ppm/°C CTE of 304L stainless steel. However, a large volume change induced by the α‐β inversion between the low‐ and high‐ Cristobalite, a 1st order displacive phase transition, results in a nonlinear step‐like change in the thermal strain of glass‐ceramics. The sudden change in the thermal strain causes a substantial transient mismatch between the glass‐ceramic and stainless steel. In this study, we developed new thermal profiles based on the SiO2 phase diagram to crystallize both Quartz and Cristobalite as high expansion crystalline phases in the glass‐ceramics. A key step in the thermal profile is the rapid cooling of glass‐ceramic from the peak sealing temperature to suppress crystallization of Cristobalite. The rapid cooling of the glass‐ceramic to an initial lower hold temperature is conducive to Quartz crystallization. After Quartz formation, a subsequent crystallization of Cristobalite is performed at a higher hold temperature. Quantitative X‐ray diffraction analysis of a series of quenched glass‐ceramic samples clearly revealed the sequence of crystallization in the new thermal profile. The coexistence of two significantly reduced volume changes, one at ~220°C from Cristobalite inversion and the other at ~470°C from Quartz inversion, greatly improves the linearity of the thermal strains of the glass‐ceramics, and is expected to improve the thermal strain match between glass‐ceramics and stainless steel over the sealing cycle.  相似文献   

2.
Glasses from the system BaO–SrO–ZnO–SiO2 with different Ba/Sr ratios were characterized regarding crystallization behavior as well as the thermal expansion of almost fully crystallized glasses. Depending on the SrO concentration, different crystalline phases precipitate from the glasses. Those with low SrO concentrations precipitate crystals with the structure of low‐temperature BaZn2Si2O7 as one of the major phases. Higher SrO concentrations cause the formation of Ba1?xSrxZn2Si2O7 solid solutions with the structure of high‐temperature BaZn2Si2O7. Both, the low‐ as well as the high‐temperature phase exhibit very different thermal expansion behaviors ranging from a very high coefficient of thermal expansion in the case of the low‐temperature phase to a very low coefficient of thermal expansion in the case of the high‐temperature phase. The glass‐ceramics with the highest and that with the lowest coefficient of thermal expansion measured between 100°C and 800°C show a difference of 7.9 × 10?6 K?1, which is caused solely by a substitution of BaO with SrO. In contrast, the maximum variation in the thermal expansion of the glasses was only 1.5 × 10?6 K?1. The microstructure of sintered and afterward crystallized glass powders was analyzed via scanning electron microscopy and showed crack‐free samples with low porosity.  相似文献   

3.
Transparent (Sr0.5Ba0.5)Nb2O6 (SBN50) nanocrystallite‐precipitated phosphate glass‐ceramics were prepared by a conventional glass‐ceramic process. x(SrO–BaO–2Nb2O5) ? (100–4x)P2O5 (xSBNP) glasses with a refractive index of 1.9–2.0 exhibited high water resistance owing to the presence of Q0 and Q1 phosphate units. Both bulk and surface crystallization of the SBN50 phase were observed in 20SBNP and 21SBNP glass‐ceramics. Although the nominal content of SBN50 crystals in the 21SBNP glass was larger than that in the 20SBNP glass, the latter exhibited better crystallinity of SBN50 and a higher number density of precipitated SBN nanocrystallites. By tuning the two‐step heat‐treatment and the chemical composition, transparent SBN50‐precipitated glass‐ceramics were successfully obtained. Given that no remarkable increase of the relative dielectric constants was observed after crystallization of the SBN50 nanocrystallites, it is postulated that the relative dielectric constant of the bulk is mainly governed by the amorphous phosphate region, and that the contribution of precipitation of the SBN50 nanocrystallites to the dielectric constant is not very significant in this system.  相似文献   

4.
Solid solutions of (1?x)BaTiO3xBi(Mg2/3Nb1/3)O3 (0 ≤ x ≤ 0.6) were prepared via a standard mixed‐oxide solid‐state sintering route and investigated for potential use in high‐temperature capacitor applications. Samples with 0.4 ≤ x ≤ 0.6 showed a temperature independent plateau in permittivity (εr). Optimum properties were obtained for x = 0.5 which exhibited a broad and stable relative εr ~940 ± 15% from ~25°C to 550°C with a loss tangent <0.025 from 74°C to 455°C. The resistivity of samples increased with increasing Bi(Mg2/3Nb1/3)O3 concentration. The activation energies of the bulk were observed to increase from 1.18 to 2.25 eV with an increase in x from 0 to 0.6. These ceramics exhibited excellent temperature stable dielectric properties and are promising candidates for high‐temperature multilayer ceramic capacitors for automotive applications.  相似文献   

5.
BaFe12?xNbxO19 (BFNO, x=0‐0.6) powders with Nb5+ substituting for Fe3+ were prepared by sol‐gel method. The formation process and electromagnetic (EM) wave absorption properties of the BFNO are investigated in detail. With Nb5+ content increasing from x=0 to x=0.6, the formation temperature of barium ferrite phase without heat time increases from ~700°C to ~900°C, while the appearance temperature of typical plate grains decreases from ~1300°C to ~1100°C, and the crystallization ability decreases at 600°C‐900°C, while the grain size increases gradually at 1100°C‐1300°C. Increasing sintering temperature and time promote the formation of barium ferrite phase and grain growth in all the samples. The ε′ and ε″ of the sample with x=0.6 sintered at 1300°C for 3 hours reach highest of ~7.9 and ~0.95 over 26.5‐40 GHz. Multiresonance peaks in permeability decrease from 40+ GHz to ~30 GHz with x rising from 0 to 0.6. Ultimately, small RLmin of ~?42 dB, thin dm of ~0.76 mm, and broad bandwidth of >12 GHz can be exhibited simultaneously around millimeter wave atmospheric window of 35 GHz.  相似文献   

6.
High pyroelectric performance and good thermal stability of pyroelectric materials are desirable for the application of infrared thermal detectors. In this work, enhanced pyroelectric properties were achieved in a new ternary (1?x)(0.98(Bi0.5Na0.5)(Ti0.995Mn0.005)O3–0.02BiAlO3)–xNaNbO3 (BNT–BA–xNN) lead‐free ceramics. The effect of NN addition on the microstructure, phase transition, ferroelectric, and pyroelectric properties of BNT–BA–xNN ceramics were investigated. It was found that the average grain size decreased as x increased to 0.03, whereas increased with further NN addition. The pyroelectric coefficient p at room temperature (RT) was significantly increased from 3.87 × 10?8Ccm?2K?1 at = 0 to 8.45 × 10?8Ccm?2K?1 at = 0.03. The figures of merit (FOMs), Fi, Fv and Fd, were also enhanced with addition of NN. Because of high p (7.48 × 10?8Ccm?2K?1) as well as relatively low dielectric permittivity (~370) and low dielectric loss (~0.011), the optimal FOMs at RT were obtained at = 0.02 with Fi = 2.66 × 10?10 m/V, Fv = 8.07 × 10?2 m2/C, and Fd = 4.22 × 10?5 Pa?1/2, which are superior to other reported lead‐free ceramics. Furthermore, the compositions with  0.03 exhibited excellent temperature stability in a wide temperature range from 20 to 80°C because of high depolarization temperature (≥110°C). Those results unveil the potential of BNT–BA–xNN ceramics for infrared detector applications.  相似文献   

7.
For the purpose of developing high‐performance glass‐ceramic superionic conductor, the controllable precipitation of LiTi2(PO4)3‐like superionic conducting phase in the Li2O–TiO2–P2O5 glass system was studied. Al with B or La co‐incorporated LiTi2(PO4)3‐based glass‐ceramics were prepared by the crystallization of the corresponding original glasses. Compared with the sole Al‐incorporated LiTi2(PO4)3‐based glass‐ceramics, the ionic conductivity shows an increase for the boron co‐incorporated one and a decrease for the lanthanum co‐incorporated one. Through the further in‐depth analysis based on the methods of DSC and X‐ray diffractive technique, this opposite change in ion conductivity was ascribed to the alterations of crystallization mechanism together with quantity of crystal phases within the glass‐ceramics.. The boron addition promoted the precipitation of LiTi2(PO4)3 phase and restrained the precipitation of second phase. The highest ionic conductivity 1.3 × 10?3 S/cm at 25°C was obtained through the heat treatment of B and Al co‐incorporated glassy samples at 900°C for 12 h. These inorganic solid electrolytes have a potential application in lithium batteries or other electrochemical ionic devices.  相似文献   

8.
This article reports on the effect of Al2O3 and B2O3 added as dopants on the preparation of glass‐ceramics (GCs) belonging to the lithium silicate glass system. The GCs are prepared by sintering route using glass powders. The reasons for the crystallization of the metastable crystalline phase lithium metasilicate (LS) are discussed and the impact of the dopants on the thermodynamics and kinetics of crystallization is investigated. The addition of dopants modifies the thermodynamic equilibrium of the system and this change is mainly entropy driven and also slowdown the kinetics of crystallization. Differential thermal analysis and hot‐stage microscopy are employed to investigate the glass‐forming ability, sintering, and crystallization behavior of the studied glasses. The crystalline phase assemblage studied under nonisothermal heating conditions in the temperature range of 800°C–900°C in air. Well sintered and dense glass‐ceramics are obtained after sintering of glass powders at 850°C–900°C for 1 h featuring crystalline phase assemblage dominated by lithium disilicate (LS2).  相似文献   

9.
A series of Y2O3-doped HfO2 ceramics (Hf1-xYxO2-0.5×, x?=?0, 0.04, 0.08, 0.12, 0.16 and 0.2) were synthesized by solid-state reaction at 1600?°C. The microstructure, thermophysical properties and phase stability were investigated. Hf1-xYxO2–0.5x ceramics were comprised of monoclinic (M) phase and cubic (C) phase when Y3+ ion concentration ranged from 0.04 to 0.16. The thermal conductivity of Hf1-xYxO2–0.5x ceramic decreased as Y3+ ion concentration increased and Hf0.8Y0.2O1.9 ceramic revealed the lowest thermal conductivity of ~?1.8?W/m*K at 1200?°C. The average thermal expansion coefficient (TEC) of Hf1-xYxO2–0.5x between 200?°C and 1300?°C increased with the Y3+ ion concentration. Hf0.8Y0.2O1.9 yielded the highest TEC of ~?10.4?×?10?6 K?1 while keeping good phase stability between room temperature and 1600?°C.  相似文献   

10.
The sequence of crystallization in a recrystallizable lithium silicate sealing glass‐ceramic Li2O–SiO2–Al2O3–K2O–B2O3–P2O5–ZnO was analyzed by in situ high‐temperature X‐ray diffraction (HTXRD). Glass‐ceramic specimens have been subjected to a two‐stage heat‐treatment schedule, including rapid cooling from sealing temperature to a first hold temperature 650°C, followed by heating to a second hold temperature of 810°C. Notable growth and saturation of Quartz was observed at 650°C (first hold). Cristobalite crystallized at the second hold temperature of 810°C, growing from the residual glass rather than converting from the Quartz. The coexistence of quartz and cristobalite resulted in a glass‐ceramic having a near‐linear thermal strain, as opposed to the highly nonlinear glass‐ceramic where the cristobalite is the dominant silica crystalline phase. HTXRD was also performed to analyze the inversion and phase stability of the two types of fully crystallized glass‐ceramics. While the inversion in cristobalite resembles the character of a first‐order displacive phase transformation, i.e., step changes in lattice parameters and thermal hysteresis in the transition temperature, the inversion in quartz appears more diffuse and occurs over a much broader temperature range. Localized tensile stresses on quartz and possible solid‐solution effects have been attributed to the transition behavior of quartz crystals embedded in the glass‐ceramics.  相似文献   

11.
Solid solutions of 12CaO·7Al2O3 (C12A7) and 12SrO·7Al2O3 (S12A7) crystals were synthesized under high pressure. X‐ray diffraction patterns revealed that the lattice constants of the synthesized samples depend linearly on the compositional ratio of C12A7 and S12A7. Electron‐probe X‐ray microanalyses show that the chemical compositions of the crystals are represented by xC12A7·(1?x)S12A7 (0<x<1). These results indicate that the variation in the lattice constants is originated from a difference in the ionic radii of Ca2+ and Sr2+ ions. From impedance measurements, it was found that S12A7 has the highest conductivity (~1 × 10?3 Scm?1 at 550°C) among the solid solutions in the C12A7–S12A7 system.  相似文献   

12.
Glass–ceramics of 80GeS2·20In2S3 were fabricated by heat‐treating the base glass at 402°C (Tg + 30°C) for different durations. The glass–ceramics exhibited some improved mechanical properties such as hardness and resistance to crack propagation, and meanwhile remained an excellent infrared (IR) transmission. The XRD and Raman results showed that only In2S3 crystals were precipitated inside glassy matrix. The evolution of two crystallization peaks (CPs) in differential scanning calorimeter (DSC) curves were studied with samples heat‐treated at 402°C for different durations. It was found that the precipitation of In2S3 crystal phase is responsible for the low‐temperature (first) CP, whereas the high‐temperature (second) CP shifts to a higher temperature with the elongation of the heat‐treatment duration. The crystallization of the higher temperature phase was inhibited with the precipitation of In2S3. Furthermore, crystallization mechanism was investigated using the nonisothermal method. The computed results showed that strictly more energy (higher activation energy, Ec) is essential for the precipitation of the higher temperature phase, which is in accordance with the DSC study of crystallized samples. More noticeable, the crystallization rate constant (K) value of 6.639 × 10?8 s?1 for the second CP is ~ 5 orders of magnitude smaller than that of the In2S3 phase, and this significant difference makes the crystallization of higher temperature crystal phase very hard. Consequently, controllable crystallization of 80GeS2·20In2S3 chalcogenide glass–ceramics with sole In2S3 crystallites can be achieved easily.  相似文献   

13.
The liquid‐phase sintering behavior and microstructural evolution of x wt% LiF aided Li2Mg3SnO6 ceramics (x = 1‐7) were investigated for the purpose to prepare dense phase‐pure ceramic samples. The grain and pore morphology, density variation, and phase structures were especially correlated with the subsequent microwave dielectric properties. The experimental results demonstrate a typical liquid‐phase sintering in LiF–Li2Mg3SnO6 ceramics, in which LiF proves to be an effective sintering aid for the Li2Mg3SnO6 ceramic and obviously reduces its optimum sintering temperature from ~1200°C to ~850°C. The actual sample density and microstructure (grain and pores) strongly depended on both the amount of LiF additive and the sintering temperature. Higher sintering temperature tended to cause the formation of closed pores in Li2Mg3SnO6x wt% LiF ceramics owing to the increase in the migration ability of grain boundary. An obvious transition of fracture modes from transgranular to intergranular ones was observed approximately at x = 4. A single‐phase dense Li2Mg3SnO6 ceramic could be obtained in the temperature range of 875°C‐1100°C, beyond which the secondary phase Li4MgSn2O7 (<850°C) and Mg2SnO4 (>1100°C) appeared. Excellent microwave dielectric properties of Q × f = 230 000‐330 000 GHz, εr = ~10.5 and τf = ~?40 ppm/°C were obtained for Li2Mg3SnO6 ceramics with x = 2‐5 as sintered at ~1150°C. For LTCC applications, a desirable Q × f value of ~133 000 GHz could be achieved in samples with x = 3‐4 as sintered at 875°C.  相似文献   

14.
Highly transparent (Y0.95?xGdxEu0.05)2O3 (= 0.15–0.55) ceramics have been fabricated by vacuum sintering at the relatively low temperature of 1700°C for 4 h with the in‐line transmittances of 73.6%–79.5% at the Eu3+ emission wavelength of 613 nm (~91.9%–99.3% of the theoretical transmittance of Y1.34Gd0.6Eu0.06O3 single crystal), whereas the = 0.65 ceramic undergoes a phase transformation at 1650°C and has a transparency of 53.4% at the lower sintering temperature of 1625°C. The effects of Gd3+ substitution for Y3+ on the particle characteristics, sintering kinetics, and optical performances of the materials were systematically studied. The results show that (1) calcining the layered rare‐earth hydroxide precursors of the ternary Y–Gd–Eu system yielded rounded oxide particles with greatly reduced hard agglomeration and the particle/crystallite size slightly decreases along with increasing Gd3+ incorporation; (2) in the temperature range 1100°C–1480°C, the sintering kinetics of (Y0.95?xGdxEu0.05)2O3 is mainly controlled by grain‐boundary diffusion with similar activation energies of ~230 kJ/mol; (3) Gd3+ addition promotes grain growth and densification in the temperature range 1100°C–1400°C; (4) the bandgap energies of the (Y0.95?xGdxEu0.05)2O3 ceramics generally decrease with increasing x; however, they are much lower than those of the oxide powders; (5) both the oxide powders and the transparent ceramics exhibit the typical red emission of Eu3+ at ~613 nm (the 5D07F2 transition) under charge transfer (CT) excitation. Gd3+ incorporation enhances the photoluminescence and shortens the fluorescence lifetime of Eu3+.  相似文献   

15.
Glass–ceramics based on the CaO–MgO–SiO2 system with limited amount of additives (B2O3, P2O5, Na2O and CaF2) were prepared. All the investigated compositions were melted at 1400 °C for 1 h and quenched in air or water to obtain transparent bulk or frit glass, respectively. Raman spectroscopy revealed that the main constituents of the glass network are the silicates Q1 and Q2 units. Scanning electron microscopy (SEM) analysis confirmed liquid–liquid phase separation and that the glasses are prone to surface crystallization. Glass–ceramics were produced via sintering and crystallization of glass-powder compacts made of milled glass-frit (mean particle size 11–15 μm). Densification started at 620–625 °C and was almost complete at 700 °C. Crystallization occurred at temperatures >700 °C. Highly dense and crystalline materials, predominantly composed of diopisde and wollastonite together with small amounts of akermanite and residual glassy phase, were obtained after heat treatment at 750 °C and 800 °C. The glass–ceramics prepared at 800 °C exhibited bending strength of 116–141 MPa, Vickers microhardness of 4.53–4.65 GPa and thermal expansion coefficient (100–500 °C) of 9.4–10.8 × 10−6 K−1.  相似文献   

16.
Spinel Zn1‐xCuxGa2O4 (= 0‐0.15) ceramics were prepared by the conventional solid‐state method. Only a single phase was indexed in all samples. The continuous lattice contraction of ZnGa2O4 unit cell was caused by Cu2+ substitution, and the lattice parameter shows a linear correlation with the content of Cu. The refined crystal structure parameters suggest that Cu2+ preferentially occupies the octahedron site, and the degree of inversion of Zn1‐xCuxGa2O4 (= 0‐0.15) ceramics almost equals to the content of Cu2+. The relative intensity of A*1g mode in Raman spectra confirm that the degree of inversion climbed with the growing content of Cu2+. The experimental and theoretical dielectric constant of Zn1‐xCuxGa2O4 ceramics fit well. Zn1‐xCuxGa2O4 (= 0.01) ceramics sintered at 1400°C for 2 h exhibited good microwave dielectric properties, with εr = 9.88, Q × = 131,445 GHz, tanδ = 6.85 × 10?5, and τf = ?60 ppm/°C.  相似文献   

17.
Transparent oxyfluoride glass‐ceramics containing Er3+, Yb3+:Ca1?xLaxF2+x nanocrystals, which may have potential applications in the fields of solid‐state laser and luminescence, were prepared. Crystallization of Ca1?xLaxF2+x and behavior of Yb3+ and Er3+ during the heat treatment was investigated. Results showed that alumina content had a significant effect on crystallization of Ca1?xLaxF2+x in the SiO2–Al2O3–CaF2–LaF3 system. Due to the size of phase‐separated areas, the size of the crystals during the heat treatment did not change significantly. After crystallization of Ca1?xLaxF2+x in the glass, the majority of Er3+ ions incorporated into the Ca1?xLaxF2+x crystals during the heat‐treatment process. Time‐resolved luminescence of Er3+ ions in the samples around 842 nm showed that the solubility of Er3+ ions in Ca1?xLaxF3 crystals is higher than pure CaF2 crystals. The glass undergoes an enormous phase separation, which keeps the Yb3+ ions within the other separated phase. Therefore, only at high temperatures (790°C) or with a long heat‐treatment time (72 h), there is a possibility for Yb3+ ions to be incorporated into the fluorine phase.  相似文献   

18.
The effects of Nd2O3 content (0–12 wt %) on crystalline phases, microstructure, and chemical durability of barium borosilicate glass‐ceramics belonging to SiO2–B2O3–Na2O–BaO–CaO–TiO2–ZrO2–Nd2O3 system were studied. The results show that the glass‐ceramics with 2–6 wt% of Nd2O3 possess mainly zirconolite and titanite phases along with a small amount baddeleyite phase in the bulk. Calcium titanate appears when the Nd2O3 content increases to 8 wt%, and the amount of quadrate calcium titanate crystals increases with further increasing content of Nd2O3. For the glass‐ceramics with 6 wt% Nd2O3 (Nd‐6), Nd elements homogeneously distribute in zirconolite, titanite, and residual glass phases. There is a strong enrichment of Nd in calcium titanate crystals for the sample with 10 wt% Nd2O3. The viscosity of Nd‐6 glass is about 49 dPa·s at 1150°C. Moreover, Nd‐6 glass‐ceramics show the lower normalized leaching rates of B (LRB), Ca (LRCa), and Nd (LRNd) when compared to that of the sample with 8 wt% Nd2O3. After 42 days, LRB, LRCa, and LRNd of the Nd‐6 glass‐ceramics are about 6.8 × 10?3, 1.6 × 10?3, and 4.4 × 10?6 g·m?2·d?1, respectively.  相似文献   

19.
We developed a new Li2O–Al2O3–SiO2 (LAS) ultra‐low expansion glass‐ceramic by nonisothermal sintering with concurrent crystallization. The optimum sintering conditions were 30°C/min with a maximum temperature of 1000°C. The best sintered material reached 98% of the theoretical density of the parent glass and has an extremely low linear thermal expansion coefficient (0.02 × 10?6/°C) in the temperature range of 40°C–500°C, which is even lower than that of the commercial glass‐ceramic Ceran® that is produced by the traditional ceramization method. The sintered glass‐ceramic presents a four‐point bending strength of 92 ± 15 MPa, which is similar to that of Ceran® (98 ± 6 MPa), in spite of the 2% porosity. It is white opaque and does not have significant infrared transmission. The maximum use temperature is 600°C. It could thus be used on modern inductively heated cooktops.  相似文献   

20.
A new ultra‐low fire glass‐free microwave dielectric material Li3FeMo3O12 was investigated for the first time. Single phase ceramics were obtained by the conventional solid‐state route after sintering at 540°C–600°C. The atomic packing fraction, FWHM of the Ag oxygen‐octahedron stretching Raman mode and Qf values of samples sintered at different temperatures correlated well with each other. The sample with a Lower Raman shift showed a higher dielectric constant. Interestingly, the system also showed a distinct adjustable temperature coefficient of resonant frequency (from ?84× 10?6/°C to 25 × 10?6/°C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号