首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
基于贝叶斯网络的电信客户流失预测分析   总被引:6,自引:0,他引:6  
电信客户流失分析常用的数据挖掘方法有自动聚类、决策树和人工神经网络,它们是采用数据本身来训练模型的,没有利用先验知识。电信客户流失是由客户心理、服务质量和对手竞争等诸多复杂的因素造成的,利用这些已有的先验知识,可以提高预测的精度。该文根据先验知识选取分析变量,采集样本数据,通过贝叶斯网络的结构学习和参数学习,建立客户流失模型并进行客户流失趋势预测,取得了比标准数据集更准确的结果,该结果和决策树方法的预测结果相比还具有较大的优势,说明贝叶斯网络是分析客户流失等不确定性问题的有效工具。  相似文献   

2.
利用数据挖掘技术,对电信行业客户信息进行了分析,对用户进行关联、分类、聚类分析,给出了解决问题的模型和方法并在实践中得到评估和检验,本文提出了一种基于组合预测理论的预测算法,在实际客户流失预测分析的应用结果表明,该算法的流失预测的准确率高于传统的分类预测算法所得到的预测准确率.构建的预测模型对解决电信客户流失预测方面的问题具有应用价值.  相似文献   

3.
基于贝叶斯网络的推理在移动客户流失分析中的应用   总被引:3,自引:4,他引:3  
叶进  林士敏 《计算机应用》2005,25(3):673-675
移动客户流失分析系统在数据挖掘的基础上,实现了客户流失模型的管理应用。其中关键的环节是根据先验知识的因果推理和基于贝叶斯网络的因果推理进行流失客户的分析,挖掘导致流失的因素,从而辅助市场经营人员制订相应的策略。实验说明,基于贝叶斯网络推理的知识可以不断修正先验知识,获得对客户流失等问题的正确认识。  相似文献   

4.
贝叶斯网络是研究变量之间预测能力的有力工具,在解决不确定性和不完整性问题以及处理复杂问题上有很大的优势。作为朴素贝叶斯网络的扩展,马尔科夫毯贝叶斯网络只依据对输出结果有显著影响的输入变量进行分类预测,是一种更为理想的解决方案。利用马尔科夫毯贝叶斯网络进行流失客户分析,挖掘导致流失的客户特征,从而辅助决策者制订相应的客户挽留策略。  相似文献   

5.
基于贝叶斯网络的信用卡客户价值预测   总被引:1,自引:0,他引:1  
在阐述贝叶斯网络的特点和学习算法的基础上,利用先验知识选取数据样本的属性变量,通过基于K2算法的贝叶斯网络结构学习和基于极大似然方法的参数学习,建立预测模型并进行银行信用卡客户价值预测。预测结果的正确率和覆盖率表明,贝叶斯网络是信用卡客户价值预测的有效工具。  相似文献   

6.
针对电信企业客户流失问题,提出采用贝叶斯决策树算法的预测模型,将贝叶斯分类的先验信息方法与决策树分类的信息熵增益方法相结合,应用到电信行业客户流失分析中,分别将移动公司的客户数据以及UCI数据纳入到模型中得出相应的结果。加入贝叶斯节点弥补决策树不能处理缺失值以及二义性数据的缺点。检验结果表明,基于贝叶斯推理的决策树算法在牺牲了较小的训练时间与分类时间的情况下,得到了比仅基于决策树算法更高的覆盖率与命中率。  相似文献   

7.
电信客户流失是我国电信企业发展中所面临的一个严重的问题,为此需要在客户流失之前作出预测,并通过相应营销手段挽留客户,该文主要讨论通过数据挖掘技术建立客户流失预测模型,以此获取即将离网的用户,并通过预测分析过程中的相关数据确定用户类型,作为营销手段选择的主要依据。  相似文献   

8.
《微型机与应用》2016,(13):51-54
针对电信客户流失数据集存在的数据维度过高及单一分类器预测效果较弱的问题,结合过滤式和封装式特征选择方法的优点及组合分类器的较高预测能力,提出了一种基于Fisher比率与预测风险准则的分步特征选择方法结合组合分类器的电信客户流失预测模型。首先,基于Fisher比率从原始特征集合中提取具有较高判别能力的特征;其次,采用预测风险准则进一步选取对分类模型预测效果影响较大的特征;最后,构建基于平均概率输出和加权概率输出的组合分类器,以进一步提高客户流失预测效果。实验结果表明,相对于单步特征提取和单分类器模型,该方法能够提高对客户流失预测的效果。  相似文献   

9.
电信客户流失是我国电信企业发展中所面临的一个严重的问题,为此需要在客户流失之前作出预测,并通过相应营销手段挽留客户,该文主要讨论通过数据挖掘技术建立客户流失预测模型,以此获取即将离网的用户,并通过预测分析过程中的相关数据确定用户类型,作为营销手段选择的主要依据。  相似文献   

10.
哈希表是数据结构中的重要概念之一。由于它在记录查找时一次存取便能得到所查记录,所以在经常要进行的大容量数据库表的查询时,显示出相当高的效率。首先介绍了哈希表的有关知识,然后介绍了电信公用电话客户流失分析中为实现合并表所采用的哈希表冲突解决方法,接着介绍了合并表的处理流程,最后简介了应用中的关键算法。  相似文献   

11.
基于代价敏感的决策树的电信离网分析模型   总被引:1,自引:0,他引:1  
随着电信行业竞争的加剧,客户流失率日益攀升,因此提高客户流失的预测精度将直接关系到电信企业的生存和发展.而电信客户数据集中存在严重的数据不平衡问题,会导致两类错分代价明显不等同.而基于传统决策树的客户流失模型却是在两类错分代价相等的前提下建立的,与实际情况不符.因此引入代价敏感学习理论,该理论将不同的错分代价纳入建模过程,以建立一个基于代价敏感的决策树的电信客户离网分析模型.该方法有效地提高了模型对流失客户的预测性能.这对促进电信业的发展具有相当重要的意义.  相似文献   

12.
支持向量机在电信客户流失预测中的应用研究   总被引:4,自引:0,他引:4  
客户流失分析与预测是客户关系管理的重要内容.由于电信客户的特征呈高度非线性、严重冗余和高维数,传统方法无法消除数据之间冗余和捕获非线性规律,导致预测精度较低.为了提高电信客户流失预测精度,提出一种基于主成份分析(PCA)支持向量机(SVM)的电信客户流失预测方法(PCA-SVM).首先利用主成分分析对原始数据进行特征降维,消除冗余,然后将得到的主成分作为非线性支持向量机的输入进行学习建模.对某电信公司客户流失数据进行了仿真,实验结果表明,PCA-SVM获得的命中率、覆盖率、准确率和提升系数远远高于其它预测方法.说明主成分分析结合支持向量机的数据挖掘方法具有很好的预测效果,为电信客户流失预测提供了一种新方法.  相似文献   

13.
针对软件中克隆代码的质量进行研究,评价软件当前所有版本中克隆代码的质量。在此基础上使用贝叶斯网络训练已有样本数据,得到克隆代码质量预测模型,其能预测软件未发布版本中克隆代码的质量,根据评价和预测结果给开发人员提供克隆代码重构和有效复用的建议,防止有害克隆代码的大量繁殖。 实验表明,该方法能够较准确地预测软件中克隆代码的质量。  相似文献   

14.
电力企业的客户服务关系到客户的切身利益和企业的经营效益,提升客服系统对电力客户诉求预判的分析与理解能力是改善电力行业客服质量的重要途径之一。为高效、针对性地解决电力客户集中需求,做到“先于客户所想”,本文以深度神经网络技术为基础,针对电力领域改进传统的中文文本分词技术以及特征提取方法,给出电力客户诉求预判的方法和流程,并通过实验验证。本文提出的方法可快速精准地对电力客户服务工单文本进行分类,挖掘出隐藏的客户用电诉求,将服务由被动变主动,第一时间解决电力客户潜在诉求。  相似文献   

15.
结合外部知识,使用特定方法进行知识图谱的链接预测,即知识图谱中缺失信息的发现和还原,是目前知识图谱领域研究的热点和关键。以电子商务应用为背景,基于已经构建好的描述用户兴趣的知识图谱,结合外部数据集,以贝叶斯网这一重要概率图模型作为不同商品之间相似性及其不确定性的表示和推理框架,通过对商品属性进行统计计算,构建反映商品之间相似关系的贝叶斯网,进而基于概率推理机制,定量地判断商品节点与用户节点之间存在链接的真实性,得到真实和完整的知识图谱,为个性化推荐和关联查询提供依据。建立在真实数据上的实验结果表明,提出的模型和算法是有效的。  相似文献   

16.
以提高电信网络投诉的客户感知和处理效率,建设“面向客户服务”的网络运营支撑系统为目标,通过共享网维和地理信息建设客服支撑系统。提出了优化的网络投诉处理流程,设计了客服支撑系统的分层系统架构,提出了采用栅格技术实现多用户并发访问和快速响应的GIS框架。应用表明,客服支撑系统能帮助客服人员快速定位网络投诉原因,提高投诉一次完成率,并规范记录网络投诉的地理位置,为进一步的网络投诉分析提供信息基础。  相似文献   

17.
数据挖掘以其强大的数据处理能力和信息挖掘能力广泛应用于各行各业。在电信业可以应用这项技术进行客户细分的研究。文章重点阐述了应用数据挖掘进行电信行业客户细分的方法和步骤。  相似文献   

18.
一种基于贝叶斯网客户购物模型的商品推荐方法   总被引:1,自引:1,他引:1  
提出一种新的基于客户购物模型的推荐系统框架,它把推荐过程形式化为客户购物信息的知识表达、知识推理过程。该方法首先对客户的购物历史数据进行学习,得到贝叶斯网客户购物模型,然后结合客户当前的购物行为,提出并实施了一种基于概率推理的推荐算法。实验表明该算法能高效实时地为客户产生个性化的商品推荐集合,且在覆盖率和准确率方面优于某些传统方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号