共查询到20条相似文献,搜索用时 46 毫秒
1.
Silk fibroin/chitosan blend films were examined through IR spectroscopy to determine the conformational changes of silk fibroin. The effects of the fibroin/chitosan blend ratios (chitosan content) on the physical and mechanical properties were investigated to discover the feasibility of using these films as biomedical materials such as artificial skin and wound dressing. The mechanical properties of the blend films containing 10–40% chitosan were found to be excellent. The tensile strength, breaking elongation, and Young's modulus were affected by the chitosan contents of the blend films, which were also related to the density and degree of swelling. The coefficient of water vapor permeability of the blend films increased linearly with the chitosan content, and the values of 1000–2000 g m ?2 day ?1 were comparable to those of commercial wound dressings. Silk fibroin/chitosan blend films had good oxygen and water vapor permeabilities, making them useful as biomaterials. In particular, the blend film containing 40–50% chitosan showed very high oxygen permeability. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 928–934, 2001 相似文献
2.
制备了纳米二氧化钛/丝素复合膜,并用原子力显微镜、X射线能谱和红外光谱对复合膜进行了表征,以甲基橙为例,考察了复合膜的光催化行为。结果表明复合膜制备方法合理,当纳米二氧化钛与丝素质量比为0.1%时,其以粒径50nm左右均匀分散于复合膜中,复合膜与普通丝素膜仅存在细微的构象差异,复合膜表现出较优异的光催化性能,甲基橙降解率可达91%,符合Langmuir Himshelwood模型。 相似文献
3.
This article deals with the characterization of blend films obtained by mixing silk fibroin (SF) and polyacrylamide (PAAm). The DSC curves of SF/PAAm blend films showed overlapping of the main thermal transitions characteristic of the individual polymers. The exothermic peak at 218°C, assigned to the β‐sheet crystallization of silk fibroin, slightly shifted to a lower temperature by blending. The weight‐retention properties (TG) of the blend films were intermediate between those of the two constituents. The TMA response was indicative of a higher thermal stability of the blend films, even at low PAAm content (≤25%), the final breaking occurring at about 300°C (100°C higher than pure SF film). The peak of dynamic loss modulus of silk fibroin at 193°C gradually shifted to lower temperature in the blend films, suggesting an enhancement of the molecular motion of the fibroin chains induced by the presence of PAAm. Changes in the NH stretching region of silk fibroin were detected by FTIR analysis of blend films. These are attributable to disturbance of the hydrogen bond pattern of silk fibroin and formation of new hydrogen bonds with PAAm. The values of strength and elongation at break of blend films slightly improved at 20–25% PAAm content. A sea–island structure was observed by examining the air surface of the blend films by scanning electron microscopy. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1563–1571, 1999 相似文献
4.
Using the freeze‐drying method, Nano‐TiO 2/silk fibroin porous films were synthesized with different ratios of TiO 2 to silk fibroin solution. Through scanning electron microscopy (SEM), X‐ray diffraction (XRD), thermogravimetric analysis (TGA), tensile strain, and water‐solubility tests, the structures and properties of these porous films were characterized. The SEM results indicated that the pores of the nano‐TiO 2/silk fibroin porous films were uniformly distributed by the freeze‐drying method. The XRD analysis indicated that the formation of nano‐TiO 2 particles might induce a conformational transition of silk fibroin from the typical Silk I to the typical Silk II structure partly with an increase in the crystallinity of the porous films. Compared with the pure silk fibroin porous films, the mechanical properties of nano‐TiO 2/silk fibroin porous films were improved, and its heat transition temperature was also enhanced; however, the water‐solubility of this material was diminished. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
5.
用分子量为10万的聚乳酸(PLLA)对丝素膜进行改性,研究不同的聚乳酸加入量对丝素膜性能的影响,对聚乳酸/丝素共混膜进行了一系列表征。万能电子试验机的测试结果表明,经聚乳酸改性后,丝素膜的断裂强度,断裂伸长率有了较大的改善,当加入聚乳酸占丝素质量为5%时,丝素膜的强度可达到27.1 MPa,伸长率达4.4%; 改性后的丝素膜的亲水性有一定程度降低,溶失率则明显减小,透汽透湿性也有所提高;红外光谱测试表明,改性后的丝素膜含有较多的β构象成分。 相似文献
6.
Silk sericin (SS)/silk fibroin (SF) blend nanofibers have been produced by electrospinning in a binary SS/SF trifluoroacetic acid (TFA) solution system, which was prepared by mixing 20 wt.% SS TFA solution and 10 wt.% SF TFA solution to give different compositions. The diameters of the SS/SF nanofibers ranged from 33 to 837 nm, and they showed a round cross section. The surface of the SS/SF nanofibers was smooth, and the fibers possessed a bead-free structure. The average diameters of the SS/SF (75/25, 50/50, and 25/75) blend nanofibers were much thicker than that of SS and SF nanofibers. The SS/SF (100/0, 75/25, and 50/50) blend nanofibers were easily dissolved in water, while the SS/SF (25/75 and 0/100) blend nanofibers could not be completely dissolved in water. The SS/SF blend nanofibers could not be completely dissolved in methanol. The SS/SF blend nanofibers were characterized by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry, and differential thermal analysis. FTIR showed that the SS/SF blend nanofibers possessed a random coil conformation and ß-sheet structure. 相似文献
7.
通过使用表面皿直接拉伸、毛细管重力纺丝和人工拉伸3种不同的成丝方法,从高浓度再生丝素水溶液中制得了丝纤维。用偏光显微镜观察了丝纤维的取向,用拉曼光谱仪和Instron拉力仪表征了丝纤维的结构和力学性能。结果发现,经毛细管剪切流动后再拉伸有利于再生丝性能的提高,所得的丝有较好的取向和较多的β折叠结构,力学性能也相对较好。剪切在丝纤维的成形过程中起重要的作用。 相似文献
8.
Silk fibroin/alginate blend sponges were examined through IR spectroscopy, X‐ray diffractometry, and differential scanning calorimetry to determine the structural changes of silk fibroin. The effects of fibroin/alginate blend ratios on the physical and mechanical properties were investigated to discover the feasibility of using these blend sponges as biomedical materials such as wound dressings. The compressive modulus of silk fibroin was increased up to 30 kPa, from 7.1 kPa, by blending with alginate. Thermal crystallization behavior of fibroin induced by heat treatment was restricted by blending with alginate. In spite of that, the structural characteristics of fibroin were not changed by incorporation with alginate. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2174–2179, 2004 相似文献
9.
Silk fibroin/chitosan (SF/CS) blend membranes were prepared and characterized by infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy. It was found that SF and CS were compatible in the blend membranes and that the membranes were dense without microscopic phase separation. Swelling experiments showed that the swelling ratio of the blend membranes increased with CS content and reached the highest value when CS content was 70 wt%. Experiments indicated that the permeability coefficient of K + through the blend membrane was 2–4 times higher than that of pure CS membrane, and 10 times higher than that of pure SF membrane. The permeation rate of K + increased linearly with CS content in the blend membrane for the lower concentration feeding solution. For different metal ions, the permeability through SF/CS blend membranes was in the sequence K + > Ca 2+ > Cd 2+ > Pb 2+ > Cu 2+ > Ni 2+. Copyright © 2006 Society of Chemical Industry 相似文献
10.
将含有甘油和戊二醛的丝素与羧甲基壳聚糖按一定比例混合,制得丝素/羧甲基壳聚糖共混膜,对共混膜的结构与性能进行了探讨。结果表明:随着羧甲基壳聚糖含量的增加,共混膜的透气率增大,加入交联剂戊二醛有效地改善了共混膜的力学性能,但其透气率有所降低;当丝素与羧甲基壳聚糖的质量比为4/1时,共混膜的断裂强度最大,力学性能较好,共混膜相容性较好,其断面光滑、致密。制备丝素/羧甲基壳聚糖共混膜的较佳条件为:丝素中的甘油质量分数为15%,戊二醛质量分数为0.075%,丝素与羧甲基壳聚糖质量比为4/1。 相似文献
11.
为解决以柞蚕丝素蛋白(ASF)为基材的生物材料力学性能差、水溶失率高等问题,首先,以ASF为原料,烯丙基缩水甘油醚(AGE)为改性剂,在碱性条件下ASF与AGE发生亲核取代反应,形成具有反应性的烯丙基丝素蛋白(ASF-AGE);然后,以N-异丙基丙烯酰胺(NIPAAm)为单体,在不使用任何交联剂的情况下,将ASF-AGE与NIPAAm进行聚合,最终形成烯丙基丝素蛋白温敏p(ASF-AGE-NIPAAm)水凝胶。采用茚三酮比色法对ASF-AGE的氨基转化率进行测定,采用 1H NMR对ASF-AGE分子结构进行表征;采用XRD、DSC、压缩测试等方法研究ASF-AGE含量对水凝胶结晶结构、温敏特性、溶失稳定性和力学性能的影响。结果表明:烯丙基双键成功引入ASF大分子链上,ASF与AGE的质量比为1∶8,温度20℃,pH=10.5,反应24 h时,得到的ASF-AGE的氨基转化率为55.21%;ASF-AGE与NIPAAm聚合形成稳定形态的水凝胶,水凝胶的LCST约为32℃,具有明显的温敏特性;ASF-AGE与NIPAAm配比为4/6时,水凝胶具有良好的溶失稳定性和综合... 相似文献
12.
Films of regenerated Bombyx mori silk are strongly affected by absorbed moisture, a phenomenon studied here by differential scanning calorimetry (DSC). Exposure of previously dried films to environments of controlled relative humidity produces test samples of well-defined equilibrium moisture content. Ultimate moisture uptake is as high as 20–23% (by weight) at 75% relative humidity. The glass transition temperature, Tg, drops by 40°C at moisture uptakes as low as 2%, and Tg depressions as large as 140°C are observed at higher relative humidity. The moisture-induced decrease of Tg is completely reversible, as a film remoistened and then redried possesses an unchanged Tg. Trends in Tg with water uptake correspond reasonably well to predictions of a classical thermodynamic theory, indicating that the plasticization effect of moisture on the combined silk-water system can be satisfactorily explained from macroscopic properties of the constituents without any reference to specific interactions. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 401–410, 1997 相似文献
13.
以玉米淀粉为基质,结合纳米Ti O 2,通过超声分散采用流延法制备了可生物降解的淀粉/Ti O 2纳米复合薄膜,研究了纳米Ti O 2对薄膜拉伸性能、阻隔性能及抗菌活性的影响,采用扫描电子显微镜(SEM)、红外光谱仪(FTIR)和X射线衍射仪(XRD)对复合膜的微观形貌和结构进行了表征。结果表明,淀粉/Ti O 2纳米复合膜中Ti O 2与淀粉分子间存在缔合作用,含适量Ti O 2的复合膜组分之间有良好的相容性,与淀粉膜相比,纳米复合膜的拉伸性能和水蒸气阻隔性能得到有效改善,含0.8%Ti O 2(质量分数,下同)的纳米复合膜拉伸强度为7.54 MPa,比淀粉膜提高了53.9%,水蒸气透过系数为5.50×10 -5 g/(mm·d),较淀粉膜降低了23.5%,该复合膜同时表现出较好的紫外线隔离性能及抗菌活性。 相似文献
14.
For the sake of solving the problems of poor mechanical strength and dissolve-loss ratio of Antheraea pernyi silk fibroin (ASF), allyl silk fibroin (ASF-AGE) was synthesized through nucleophilic substitution using ASF as substrate and allyl glycidyl ether (AGE) as modifier under basic conditions. And a series of gel were manufactured though in situ polymerization using ASF-AGE and N-isopropylacrylamide (NIPAAm) monomer without any crosslinking agent. The amino conversion rate of ASF was confirmed by ninhydrin colorimetry, the molecular structure of ASF-AGE was characterized by 1H NMR and the influence of ASF-AGE content on crystal structure, temperature sensitivity, dissolution stability and mechanical properties of hydrogels were also investigated by XRD, DSC, compression test and so on. The results indicated that allyl was successfully introduced into ASF, the amino conversion rate of ASF was 55.21% when the reaction condition was 1∶8 mass ratio (ASF/AGE), T=20℃ and pH=10.5. The stable hydrogels can be obtained by ASF-AGE and NIPAAm polymerization. The hydrogels showed lower critical solution temperatures (LCST) at about 32℃, which revealed obvious thermosensitive characteristic. When the ratio of ASF-AGE to NIPAAm is 4/6, the hydrogel has good dissolution stability and comprehensive mechanical properties. 相似文献
15.
The flexible and transparent composite films were fabricated by a mixture of silk fibroin (SF), poly(ethylene glycol), and mulberry cellulose nanowhiskers (CNWs). The CNWs were uniformly dispersed in the matrix when its content was as high as 12 w/w%. The tensile properties of composite films generally depended on the nanowhisker content, but significantly improved when compared to the pure SF film. DMA analysis revealed that the alpha transition temperature increased gradually with the increase of nanowhisker content, probably due to the formation of interactions between the nanowhiskers and the SF molecular chains, leading to the mobility reduction of the amorphous SF. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
16.
Biocompatible and biodegradable three-dimensional scaffolds are commonly porous which serve to provide suitable microenvironments for mechanical supporting and optimal cell growth. Silk fibroin (SF) is a natural and biomedical polymer with appropriate and improvable mechanical properties. Making a composite with a bioceramicas reinforcement is a general strategy to prepare a scaffold for hard tissue engineering applications. In the present study, SF was separately combined with titanium dioxide (TiO2) and fluoridated titanium dioxide nanoparticles (TiO2-F) as bioceramic reinforcements for bone tissue engineering purposes. At the first step, SF was extracted from Bombyx mori cocoons. Then, TiO2 nanoparticles were fluoridated by hydrofluoric acid. Afterward, SF/TiO2 and SF/TiO2-F nanocomposite scaffolds were prepared by freeze-drying method to obtain a porous microstructure. Both SF/TiO2 and SF/TiO2-F scaffolds contained 0, 5, 10, 15 and 20 wt% nanoparticles. To evaluate the efficacy of nanoparticles addition on the mechanical properties of the prepared scaffolds, their compressive properties were assayed. Likewise, the pores morphology and microstructure of the scaffolds were investigated using scanning electron microscopy. In addition, the porosity and density of the scaffolds were measured according to the Archimedes’ principle. Afterward, compressive modulus and microstructure of the prepared scaffolds were evaluated and modeled by Gibson–Ashby’s mechanical models. The results revealed that the compressive modulus predicted by the mechanical model exactly corresponds to the experimental one. The modeling approved the honeycomb structure of the prepared scaffolds which possess interconnected pores. 相似文献
17.
基于丝素的高分子复合材料可以广泛地应用于组织工程、生物医药和半导体材料等领域。通过物理-共混技术制备了一种新型生物高分子丝素/聚乳酸复合膜。利用扫描电镜、傅里叶红外光谱、拉曼光谱、X射线衍射和热分析技术对其形貌、结构和相态组分以及热稳定性进行了表征,探究了不同比例复合膜的微结构、相互作用机理和热稳定性。结果表明:随着丝素含量的增加,复合膜中的β-折叠含量增多,α-螺旋和无规卷曲含量减少,玻璃化转变温度提高;由于丝素与聚乳酸间的相互作用,提高了复合膜的热稳定性。 相似文献
18.
Silk fibroin/chitosan blend films were prepared by the solvent casting method. Miscibility between silk fibroin and chitosan was examined by dynamic mechanical thermal analysis. Structural changes of silk fibroin by the addition of chitosan were investigated by IR spectroscopy. The conformational transition of silk fibroin from random coil form to β‐sheet structure induced by blending with chitosan resulted in the increase of crystallinity and density of the blend films. The blend film containing 30 wt % chitosan exhibited a maximum increase in crystallinity and density. It was found that the tensile strength and initial tensile modulus of blend films were greatly enhanced with increasing the chitosan content and showed a maximum value at the composition of 30 wt % chitosan. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2571–2575, 1999 相似文献
19.
以再生丝素蛋白(SF)水溶液和丝胶蛋白(SS)水溶液为纺丝液,微流体多通道芯片为纺丝器,成功制备了SF/SS和SF/SS/SF纤维毡。制备SF/SS纤维毡时,上述两流体在微通道中以层流方式流动,到达芯片出口处既不共混也不分层,而是各自独立成丝,通过扫描电镜可以观察到粗细差异较大的两种纤维共存,形貌较好。以SS水溶液为微通道的中心流体,SF水溶液为两侧流体,通过微流体静电纺制得SF/SS/SF纤维毡,SF部分与SS部分可能形成了三明治螺旋特殊结构。纺丝液流速会对纤维毡形态结构产生影响,SF溶液流速保持不变,增加SS溶液的流速,纤维粘连严重且容易出现断裂;保持SS流速不变,增大SF溶液流速,纤维粘连性得到改善,且形貌变好。 相似文献
20.
采用溶胶-凝胶方法制备纳米TiO 2复合丝素膜。UV和SEM测试结果表明,该丝素膜中纳米TiO 2均匀分散在丝素中,TiO 2粒径约为80 nm;同时采用一维红外光谱、二维红外相关光谱对纯丝素膜及复合丝素膜结构进行表征。结果表明,随着纳米TiO 2的生成,丝素蛋白中弱氢键缔合的N—H键以及自由的N—H键发生断裂及重组,生成了强氢键;丝素分子从无序状态转变为有序排列,同时无规线团构象及α螺旋构象向β折叠构象发生转变,最后促使丝素蛋白的结晶构象从Silk Ⅰ转变为Silk Ⅱ。 相似文献
|