首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantification of coronary artery disease (CAD) from cardiac computed tomography angiography (CTA) is important both structurally (lumen area stenosis) and functionally (combined with computational fluid dynamics to determine fractional flow reserve) for assessment of ischemic stenosis and to guide treatment. Hence, it is important to have CTA image processing technique for segmentation and reconstruction of coronary arteries. In this study, we developed segmentation and reconstruction techniques, based on fast marching and Runge–Kutta methods for centerline extraction, and surface mesh generation. The accuracy of the reconstructed models was validated with direct intravascular ultrasound (IVUS) measurements in 1950 cross sections within 4 arteries. High correlation was found between CTA and IVUS measurements for lumen areas (\(r=0.993\), \(p<0.001\)). Receiver-operating characteristic (ROC) curves showed excellent accuracies for detection of different cutoff values of cross-lumen area (5 \(\text {mm}^2\), 6 \(\text {mm}^2\), 7 \(\text {mm}^2\) and 8 \(\text {mm}^2\), all ROC values >0.99). We conclude that our technique has sufficient accuracy for quantifying coronary lumen area. The accuracy and efficiency demonstrated that our approach can facilitate quantitative evaluation of coronary stenosis and potentially help in real-time assessment of CAD.  相似文献   

2.
In this paper, an involutive algorithm for computation of Gröbner bases for polynomial ideals in a ring of polynomials in many variables over the finite field \(\mathbb{F}_2 \) with the values of variables belonging of \(\mathbb{F}_2 \) is considered. The algorithm uses Janet division and is specialized for a graded reverse lexicographical order of monomials. We compare efficiency of this algorithm and its implementation in C++ with that of the Buchberger algorithm, as well as with the algorithms of computation of Gröbner bases that are built in the computer algebra systems Singular and CoCoA and in the FGb library for Maple. For the sake of comparison, we took widely used examples of computation of Gröbner bases over ? and adapted them for \(\mathbb{F}_2 \). Polynomial systems over \(\mathbb{F}_2 \) with the values of variables in \(\mathbb{F}_2 \) are of interest, in particular, for modeling quantum computation and a number of cryptanalysis problems.  相似文献   

3.
We study the problem of non-preemptively scheduling n jobs, each job j with a release time \(t_j\), a deadline \(d_j\), and a processing time \(p_j\), on m parallel identical machines. Cieliebak et al. (2004) considered the two constraints \(|d_j-t_j|\le \lambda {}p_j\) and \(|d_j-t_j|\le p_j +\sigma \) and showed the problem to be NP-hard for any \(\lambda >1\) and for any \(\sigma \ge 2\). We complement their results by parameterized complexity studies: we show that, for any \(\lambda >1\), the problem remains weakly NP-hard even for \(m=2\) and strongly W[1]-hard parameterized by m. We present a pseudo-polynomial-time algorithm for constant m and \(\lambda \) and a fixed-parameter tractability result for the parameter m combined with \(\sigma \).  相似文献   

4.
The synthesis of patient data of a certain medical image modality by applying an image processing pipeline starting from other modality is receiving a lot of interest recently, as it allows to save acquisition time and sometimes avoid radiation to the patient. An example of this is the creation of computerized tomography volumes from magnetic resonance imaging data, which can be useful for several applications such as electromagnetic simulations, cranial morphometry and attenuation correction in PET/MR systems. We present a fast patch-based algorithm for this purpose, implemented using graphics processing unit computing techniques and gaining up to \(\times\)15.9 of speedup against a multicore CPU solution and up to about \(\times\)75 against a single core CPU solution.  相似文献   

5.
For the XXZ subclass of symmetric two-qubit X states, we study the behavior of quantum conditional entropy \(S_{cond}\) as a function of measurement angle \(\theta \in [0,\pi /2]\). Numerical calculations show that the function \(S_{cond}(\theta )\) for X states can have at most one local extremum in the open interval from zero to \(\pi /2\) (unimodality property). If the extremum is a minimum, the quantum discord displays region with variable (state-dependent) optimal measurement angle \(\theta ^*\). Such \(\theta \)-regions (phases, fractions) are very tiny in the space of X-state parameters. We also discover the cases when the conditional entropy has a local maximum inside the interval \((0,\pi /2)\). It is remarkable that the maxima exist in surprisingly wide regions, and the boundaries for such regions are defined by the same bifurcation conditions as for those with a minimum.  相似文献   

6.
A method for calculating the one-way quantum deficit is developed. It involves a careful study of post-measured entropy shapes. We discovered that in some regions of X-state space the post-measured entropy \(\tilde{S}\) as a function of measurement angle \(\theta \in [0,\pi /2]\) exhibits a bimodal behavior inside the open interval \((0,\pi /2)\), i.e., it has two interior extrema: one minimum and one maximum. Furthermore, cases are found when the interior minimum of such a bimodal function \(\tilde{S}(\theta )\) is less than that one at the endpoint \(\theta =0\) or \(\pi /2\). This leads to the formation of a boundary between the phases of one-way quantum deficit via finite jumps of optimal measured angle from the endpoint to the interior minimum. Phase diagram is built up for a two-parameter family of X states. The subregions with variable optimal measured angle are around 1\(\%\) of the total region, with their relative linear sizes achieving \(17.5\%\), and the fidelity between the states of those subregions can be reduced to \(F=0.968\). In addition, a correction to the one-way deficit due to the interior minimum can achieve \(2.3\%\). Such conditions are favorable to detect the subregions with variable optimal measured angle of one-way quantum deficit in an experiment.  相似文献   

7.
What is the minimal number of elements in a rank-1 positive operator-valued measure (POVM) which can uniquely determine any pure state in d-dimensional Hilbert space \(\mathcal {H}_d\)? The known result is that the number is no less than \(3d-2\). We show that this lower bound is not tight except for \(d=2\) or 4. Then we give an upper bound \(4d-3\). For \(d=2\), many rank-1 POVMs with four elements can determine any pure states in \(\mathcal {H}_2\). For \(d=3\), we show eight is the minimal number by construction. For \(d=4\), the minimal number is in the set of \(\{10,11,12,13\}\). We show that if this number is greater than 10, an unsettled open problem can be solved that three orthonormal bases cannot distinguish all pure states in \(\mathcal {H}_4\). For any dimension d, we construct \(d+2k-2\) adaptive rank-1 positive operators for the reconstruction of any unknown pure state in \(\mathcal {H}_d\), where \(1\le k \le d\).  相似文献   

8.
The quantum Fourier transform, with exponential speed-up compared to the classical fast Fourier transform, has played an important role in quantum computation as a vital part of many quantum algorithms (most prominently, Shor’s factoring algorithm). However, situations arise where it is not sufficient to encode the Fourier coefficients within the quantum amplitudes, for example in the implementation of control operations that depend on Fourier coefficients. In this paper, we detail a new quantum scheme to encode Fourier coefficients in the computational basis, with fidelity \(1 - \delta \) and digit accuracy \(\epsilon \) for each Fourier coefficient. Its time complexity depends polynomially on \(\log (N)\), where N is the problem size, and linearly on \(1/\delta \) and \(1/\epsilon \). We also discuss an application of potential practical importance, namely the simulation of circulant Hamiltonians.  相似文献   

9.
We present some new analytical polygamy inequalities satisfied by the x-th power of convex-roof extended negativity of assistance with \(x\ge 2\) and \(x\le 0\) for multi-qubit generalized W-class states. Using Rényi-\(\alpha \) entropy (R\(\alpha \)E) with \(\alpha \in [(\sqrt{7}-1)/2, (\sqrt{13}-1)/2]\), we prove new monogamy and polygamy relations. We further show that the monogamy inequality also holds for the \(\mu \)th power of Rényi-\(\alpha \) entanglement. Moreover, we study two examples in multipartite higher-dimensional system for those new inequalities.  相似文献   

10.
We propose, analyze, and test a new MHD discretization which decouples the system into two Oseen problems at each timestep yet maintains unconditional stability with respect to the time step size, is optimally accurate in space, and behaves like second order in time in practice. The proposed method chooses a parameter \(\theta \in [0,1]\), dependent on the viscosity \(\nu \) and magnetic diffusivity \(\nu _m\), so that the explicit treatment of certain viscous terms does not cause instabilities, and gives temporal accuracy \(O(\Delta t^2 + (1-\theta )|\nu -\nu _m|\Delta t)\). In practice, \(\nu \) and \(\nu _m\) are small, and so the method behaves like second order. When \(\theta =1\), the method reduces to a linearized BDF2 method, but it has been proven by Li and Trenchea that such a method is stable only in the uncommon case of \(\frac{1}{2}< \frac{\nu }{\nu _m} < 2\). For the proposed method, stability and convergence are rigorously proven for appropriately chosen \(\theta \), and several numerical tests are provided that confirm the theory and show the method provides excellent accuracy in cases where usual BDF2 is unstable.  相似文献   

11.
We address the problem of counting emitted photons in two-photon laser scanning microscopy. Following a laser pulse, photons are emitted after exponentially distributed waiting times. Modeling the counting process is of interest because photon detectors have a dead period after a photon is detected that leads to an underestimate of the count of emitted photons. We describe a model which has a Poisson \((\alpha )\) number N of photons emitted, and a dead period \(\Delta \) that is standardized by the fluorescence time constant \(\tau (\delta = \Delta /\tau )\), and an observed count D. The estimate of \(\alpha \) determines the intensity of a single pixel in an image. We first derive the distribution of D and study its properties. We then use it to estimate \(\alpha \) and \(\delta \) simultaneously by maximum likelihood. We show that our results improve the signal-to-noise ratio, hence the quality of actual images.  相似文献   

12.
New hybridized discontinuous Galerkin (HDG) methods for the interface problem for elliptic equations are proposed. Unknown functions of our schemes are \(u_h\) in elements and \(\hat{u}_h\) on inter-element edges. That is, we formulate our schemes without introducing the flux variable. We assume that subdomains \(\Omega _1\) and \(\Omega _2\) are polyhedral domains and that the interface \(\Gamma =\partial \Omega _1\cap \partial \Omega _2\) is polyhedral surface or polygon. Moreover, \(\Gamma \) is assumed to be expressed as the union of edges of some elements. We deal with the case where the interface is transversely connected with the boundary of the whole domain \(\overline{\Omega }=\overline{\Omega _1\cap \Omega _2}\). Consequently, the solution u of the interface problem may not have a sufficient regularity, say \(u\in H^2(\Omega )\) or \(u|_{\Omega _1}\in H^2(\Omega _1)\), \(u|_{\Omega _2}\in H^2(\Omega _2)\). We succeed in deriving optimal order error estimates in an HDG norm and the \(L^2\) norm under low regularity assumptions of solutions, say \(u|_{\Omega _1}\in H^{1+s}(\Omega _1)\) and \(u|_{\Omega _2}\in H^{1+s}(\Omega _2)\) for some \(s\in (1/2,1]\), where \(H^{1+s}\) denotes the fractional order Sobolev space. Numerical examples to validate our results are also presented.  相似文献   

13.
One way to depict a crystallographic structure is by a periodic (di)graph, i.e., a graph whose group of automorphisms has a translational subgroup of finite index acting freely on the structure. We establish a relationship between periodic graphs representing crystallographic structures and an infinite hierarchy of intersection languages \(\mathcal {DCL}_d,\,d=0,1,2,\ldots \), within the intersection classes of deterministic context-free languages. We introduce a class of counter machines that accept these languages, where the machines with d counters recognize the class \(\mathcal {DCL}_d\). An intersection of d languages in \(\mathcal {DCL}_1\) defines \(\mathcal {DCL}_d\). We prove that there is a one-to-one correspondence between sets of walks starting and ending in the same unit of a d-dimensional periodic (di)graph and the class of languages in \(\mathcal {DCL}_d\). The proof uses the following result: given a digraph \(\Delta \) and a group G, there is a unique digraph \(\Gamma \) such that \(G\le \mathrm{Aut}\,\Gamma ,\,G\) acts freely on the structure, and \(\Gamma /G \cong \Delta \).  相似文献   

14.
We introduce two scheduling problems, the flexible bandwidth allocation problem (\(\textsc {FBAP}\)) and the flexible storage allocation problem (\(\textsc {FSAP}\)). In both problems, we have an available resource, and a set of requests, each consists of a minimum and a maximum resource requirement, for the duration of its execution, as well as a profit accrued per allocated unit of the resource. In \(\textsc {FBAP}\), the goal is to assign the available resource to a feasible subset of requests, such that the total profit is maximized, while in \(\textsc {FSAP}\) we also require that each satisfied request is given a contiguous portion of the resource. Our problems generalize the classic bandwidth allocation problem (BAP) and storage allocation problem (SAP) and are therefore \(\text {NP-hard}\). Our main results are a 3-approximation algorithm for \(\textsc {FBAP}\) and a \((3+\epsilon )\)-approximation algorithm for \(\textsc {FSAP}\), for any fixed \(\epsilon >0 \). These algorithms make nonstandard use of the local ratio technique. Furthermore, we present a \((2+\epsilon )\)-approximation algorithm for \(\textsc {SAP}\), for any fixed \(\epsilon >0 \), thus improving the best known ratio of \(\frac{2e-1}{e-1} + \epsilon \). Our study is motivated also by critical resource allocation problems arising in all-optical networks.  相似文献   

15.
Many engineering problems can be categorized into constrained optimization problems (COPs). The engineering design optimization problem is very important in engineering industries. Because of the complexities of mathematical models, it is difficult to find a perfect method to solve all the COPs very well. \(\varepsilon \) constrained differential evolution (\(\varepsilon \)DE) algorithm is an effective method in dealing with the COPs. However, \(\varepsilon \)DE still cannot obtain more precise solutions. The interaction between feasible and infeasible individuals can be enhanced, and the feasible individuals can lead the population finding optimum around it. Hence, in this paper we propose a new algorithm based on \(\varepsilon \) feasible individuals driven local search called as \(\varepsilon \) constrained differential evolution algorithm with a novel local search operator (\(\varepsilon \)DE-LS). The effectiveness of the proposed \(\varepsilon \)DE-LS algorithm is tested. Furthermore, four real-world engineering design problems and a case study have been studied. Experimental results show that the proposed algorithm is a very effective method for the presented engineering design optimization problems.  相似文献   

16.
This paper aims to develop new and fast algorithms for recovering a sparse vector from a small number of measurements, which is a fundamental problem in the field of compressive sensing (CS). Currently, CS favors incoherent systems, in which any two measurements are as little correlated as possible. In reality, however, many problems are coherent, and conventional methods such as \(L_1\) minimization do not work well. Recently, the difference of the \(L_1\) and \(L_2\) norms, denoted as \(L_1\)\(L_2\), is shown to have superior performance over the classic \(L_1\) method, but it is computationally expensive. We derive an analytical solution for the proximal operator of the \(L_1\)\(L_2\) metric, and it makes some fast \(L_1\) solvers such as forward–backward splitting (FBS) and alternating direction method of multipliers (ADMM) applicable for \(L_1\)\(L_2\). We describe in details how to incorporate the proximal operator into FBS and ADMM and show that the resulting algorithms are convergent under mild conditions. Both algorithms are shown to be much more efficient than the original implementation of \(L_1\)\(L_2\) based on a difference-of-convex approach in the numerical experiments.  相似文献   

17.
Let \(H_{1}, H_{2},\ldots ,H_{n}\) be separable complex Hilbert spaces with \(\dim H_{i}\ge 2\) and \(n\ge 2\). Assume that \(\rho \) is a state in \(H=H_1\otimes H_2\otimes \cdots \otimes H_n\). \(\rho \) is called strong-k-separable \((2\le k\le n)\) if \(\rho \) is separable for any k-partite division of H. In this paper, an entanglement witnesses criterion of strong-k-separability is obtained, which says that \(\rho \) is not strong-k-separable if and only if there exist a k-division space \(H_{m_{1}}\otimes \cdots \otimes H_{m_{k}}\) of H, a finite-rank linear elementary operator positive on product states \(\Lambda :\mathcal {B}(H_{m_{2}}\otimes \cdots \otimes H_{m_{k}})\rightarrow \mathcal {B}(H_{m_{1}})\) and a state \(\rho _{0}\in \mathcal {S}(H_{m_{1}}\otimes H_{m_{1}})\), such that \(\mathrm {Tr}(W\rho )<0\), where \(W=(\mathrm{Id}\otimes \Lambda ^{\dagger })\rho _{0}\) is an entanglement witness. In addition, several different methods of constructing entanglement witnesses for multipartite states are also given.  相似文献   

18.
We compare different notions of simultaneous measurability (compatibility) of observables on lattice \(\sigma \)-effect algebras and more generally, on \(\sigma \)-effect algebras that can be covered by \(\sigma \)-MV-algebras. We prove that every \(\sigma \)-MV-algebra is the range of a \(\sigma \)-additive observable, and we compare the following notions of compatibility of observables: joint measurability, coexistence, joint measurability of binarizations, coexistence of binarizations, smearings of the same observable. We prove that if there is a faithful state on the effect algebra, then any two standard observables that are smearings of the same (sharp) observable admit a generalized joint observable.  相似文献   

19.
We begin by investigating relationships between two forms of Hilbert–Schmidt two-rebit and two-qubit “separability functions”—those recently advanced by Lovas and Andai (J Phys A Math Theor 50(29):295303, 2017), and those earlier presented by Slater (J Phys A 40(47):14279, 2007). In the Lovas–Andai framework, the independent variable \(\varepsilon \in [0,1]\) is the ratio \(\sigma (V)\) of the singular values of the \(2 \times 2\) matrix \(V=D_2^{1/2} D_1^{-1/2}\) formed from the two \(2 \times 2\) diagonal blocks (\(D_1, D_2\)) of a \(4 \times 4\) density matrix \(D= \left||\rho _{ij}\right||\). In the Slater setting, the independent variable \(\mu \) is the diagonal-entry ratio \(\sqrt{\frac{\rho _{11} \rho _ {44}}{\rho _ {22} \rho _ {33}}}\)—with, of central importance, \(\mu =\varepsilon \) or \(\mu =\frac{1}{\varepsilon }\) when both \(D_1\) and \(D_2\) are themselves diagonal. Lovas and Andai established that their two-rebit “separability function” \(\tilde{\chi }_1 (\varepsilon )\) (\(\approx \varepsilon \)) yields the previously conjectured Hilbert–Schmidt separability probability of \(\frac{29}{64}\). We are able, in the Slater framework (using cylindrical algebraic decompositions [CAD] to enforce positivity constraints), to reproduce this result. Further, we newly find its two-qubit, two-quater[nionic]-bit and “two-octo[nionic]-bit” counterparts, \(\tilde{\chi _2}(\varepsilon ) =\frac{1}{3} \varepsilon ^2 \left( 4-\varepsilon ^2\right) \), \(\tilde{\chi _4}(\varepsilon ) =\frac{1}{35} \varepsilon ^4 \left( 15 \varepsilon ^4-64 \varepsilon ^2+84\right) \) and \(\tilde{\chi _8} (\varepsilon )= \frac{1}{1287}\varepsilon ^8 \left( 1155 \varepsilon ^8-7680 \varepsilon ^6+20160 \varepsilon ^4-25088 \varepsilon ^2+12740\right) \). These immediately lead to predictions of Hilbert–Schmidt separability/PPT-probabilities of \(\frac{8}{33}\), \(\frac{26}{323}\) and \(\frac{44482}{4091349}\), in full agreement with those of the “concise formula” (Slater in J Phys A 46:445302, 2013), and, additionally, of a “specialized induced measure” formula. Then, we find a Lovas–Andai “master formula,” \(\tilde{\chi _d}(\varepsilon )= \frac{\varepsilon ^d \Gamma (d+1)^3 \, _3\tilde{F}_2\left( -\frac{d}{2},\frac{d}{2},d;\frac{d}{2}+1,\frac{3 d}{2}+1;\varepsilon ^2\right) }{\Gamma \left( \frac{d}{2}+1\right) ^2}\), encompassing both even and odd values of d. Remarkably, we are able to obtain the \(\tilde{\chi _d}(\varepsilon )\) formulas, \(d=1,2,4\), applicable to full (9-, 15-, 27-) dimensional sets of density matrices, by analyzing (6-, 9, 15-) dimensional sets, with not only diagonal \(D_1\) and \(D_2\), but also an additional pair of nullified entries. Nullification of a further pair still leads to X-matrices, for which a distinctly different, simple Dyson-index phenomenon is noted. C. Koutschan, then, using his HolonomicFunctions program, develops an order-4 recurrence satisfied by the predictions of the several formulas, establishing their equivalence. A two-qubit separability probability of \(1-\frac{256}{27 \pi ^2}\) is obtained based on the operator monotone function \(\sqrt{x}\), with the use of \(\tilde{\chi _2}(\varepsilon )\).  相似文献   

20.
Users of location-based services are highly vulnerable to privacy risks since they need to disclose, at least partially, their locations to benefit from these services. One possibility to limit these risks is to obfuscate the location of a user by adding random noise drawn from a noise function. In this paper, we require the noise functions to satisfy a generic location privacy notion called \(\ell \)-privacy, which makes the position of the user in a given region \(\mathcal {X}\) relatively indistinguishable from other points in \(\mathcal {X}\). We also aim at minimizing the loss in the service utility due to such obfuscation. While existing optimization frameworks regard the region \(\mathcal {X}\) restrictively as a finite set of points, we consider the more realistic case in which the region is rather continuous with a nonzero area. In this situation, we demonstrate that circular noise functions are enough to satisfy \(\ell \)-privacy on \(\mathcal {X}\) and equivalently on the entire space without any penalty in the utility. Afterward, we describe a large parametric space of noise functions that satisfy \(\ell \)-privacy on \(\mathcal {X}\), and show that this space has always an optimal member, regardless of \(\ell \) and \(\mathcal {X}\). We also investigate the recent notion of \(\epsilon \)-geo-indistinguishability as an instance of \(\ell \)-privacy and prove in this case that with respect to any increasing loss function, the planar Laplace noise function is optimal for any region having a nonzero area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号