首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Ecosystem energy has been shown to be a strong correlate with biological diversity at continental scales. Early efforts to characterize this association used the normalized difference vegetation index (NDVI) to represent ecosystem energy. While this spectral vegetation index covaries with measures of ecosystem energy such as net primary production, the covariation is known to degrade in areas of very low vegetation or in areas of dense forest. Two of the new vegetation products from the MODIS sensor, derived by integrating spectral reflectance, climate data, and land cover, are thought to better approximate primary productivity than NDVI. In this study, we determine if the new MODIS derived measures of primary production, gross primary productivity (GPP) and net primary productivity (NPP) better explain variation in bird richness than historically used NDVI. Moreover, we evaluate if the two productivity measures covary more strongly with bird diversity in those vegetation conditions where limitations of NDVI are well recognized.Biodiversity was represented as native landbird species richness derived from the North American Breeding Bird Survey. Analyses included correlation analyses among predictor variables, and univariate regression analyses between each predictor variable and bird species richness. Analyses were done at two levels: for all BBS routes across natural landscapes in North America; and for routes in 10 vegetation classes stratified by vegetated cover along a gradient from bare ground to herbaceous cover to tree cover. We found that NDVI, GPP and NPP were highly correlated and explained similar variation in bird species richness when analyzed for all samples across North America. However, when samples were stratified by vegetated cover, strength of correlation between NDVI and both productivity measures was low for samples with bare ground and for dense forest. The NDVI also explained substantially less variation in bird species richness than the primary production in areas with more bare ground and in areas of dense forest. We conclude that MODIS productivity measures have higher utility in studies of the relationship of species richness and productivity and that MODIS GPP and NPP improve on NDVI, especially for studies with large variation in vegetated cover and density.  相似文献   

2.
MODIS primary production products (MOD17) are the first regular, near-real-time data sets for repeated monitoring of vegetation primary production on vegetated land at 1-km resolution at an 8-day interval. But both the inconsistent spatial resolution between the gridded meteorological data and MODIS pixels, and the cloud-contaminated MODIS FPAR/LAI (MOD15A2) retrievals can introduce considerable errors to Collection4 primary production (denoted as C4 MOD17) results. Here, we aim to rectify these problems through reprocessing key inputs to MODIS primary vegetation productivity algorithm, resulting in improved Collection5 MOD17 (here denoted as C5 MOD17) estimates. This was accomplished by spatial interpolation of the coarse resolution meteorological data input and with temporal filling of cloud-contaminated MOD15A2 data. Furthermore, we modified the Biome Parameter Look-Up Table (BPLUT) based on recent synthesized NPP data and some observed GPP derived from some flux tower measurements to keep up with the improvements in upstream inputs. Because MOD17 is one of the down-stream MODIS land products, the performance of the algorithm can be largely influenced by the uncertainties from upstream inputs, such as land cover, FPAR/LAI, the meteorological data, and algorithm itself. MODIS GPP fits well with GPP derived from 12 flux towers over North America. Globally, the 3-year MOD17 NPP is comparable to the Ecosystem Model-Data Intercomparison (EMDI) NPP data set, and global total MODIS GPP and NPP are inversely related to the observed atmospheric CO2 growth rates, and MEI index, indicating MOD17 are reliable products. From 2001 to 2003, mean global total GPP and NPP estimated by MODIS are 109.29 Pg C/year and 56.02 Pg C/year, respectively. Based on this research, the improved global MODIS primary production data set is now ready for monitoring ecological conditions, natural resources and environmental changes.  相似文献   

3.
For the estimation of annual Gross Primary Productivity(GPP),it is proposed an estimation method with simple parameters and small errors.By taking each type of vegetation in the area of Three-North Shelterbelt Program(TNSP) as the research subject,the MODIS vegetation indices were obtained,and the seasonal variation curve of vegetation indices were built.Then,the fitting relation between the integral of time series vegetation indices(ΣVIs) and GPP products of MODIS was established,so as to realize a simple GPP estimation method and study the applicable ΣVIs for estimating the GPP of all vegetation types.The results show that:(1) ΣVIs is suitable for estimating the annual total GPP in research area and significantly correlated with MODIS GPP at the confidence level of p<0.01;(2) ΣEVI2 is applicable to estimate the GPP of evergreen needleleaf forest,decidious needleleaf forest,decidious broadleaf forest,mixed forest,woody savannas,savannas,permanent wetlands,croplands,croplands/natural vegetation mosaic,while the effect of ΣNDVI for estimating the GPP of closed shrublands,open shrublands,grasslands,croplands,and barren or sparsely vegetated is superior to ΣEVI andΣEVI2;(3) Since the NDVI itself is saturated in the area of high Leaf Area Index(LAI),the error of estimating the GPP of high LAI vegetation type by ΣNDVI is larger,while using ΣEVI and ΣEVI2 to estimate them has better accuracy,and the limitation from blue band of EVI2 reduces compared with EVI,which can be applied to the GPP research of long time series better.  相似文献   

4.
The ability to predict spatial patterns of species richness using a few easily measured environmental variables would facilitate timely evaluation of potential impacts of anthropogenic and natural disturbances on biodiversity and ecosystem functions. Two common hypotheses maintain that faunal species richness can be explained in part by either local vegetation heterogeneity or primary productivity. Although remote sensing has long been identified as a potentially powerful source of information on the latter, its principal application to biodiversity studies has been to develop classified vegetation maps at relatively coarse resolution, which then have been used to estimate animal diversity. Although classification schemes can be delineated on the basis of species composition of plants, these schemes generally do not provide information on primary productivity. Furthermore, the classification procedure is a time- and labour-intensive process, yielding results with limited accuracy. To meet decision-making needs and to develop land management strategies, more efficient methods of generating information on the spatial distribution of faunal diversity are needed. This article reports on the potential of predicting species richness using single-date Normalized Difference Vegetation Index (NDVI) derived from Landsat Thematic Mapper (TM). We use NDVI as an indicator of vegetation productivity, and examine the relationship of three measures of NDVI—mean, maximum, and standard deviation—with patterns of bird and butterfly species richness at various spatial scales. Results indicate a positive correlation, but with no definitive functional form, between species richness and productivity. The strongest relationships between species richness of birds and NDVI were observed at larger sampling grains and extent, where each of the three NDVI measures explained more than 50% of the variation in species richness. The relationship between species richness of butterflies and NDVI was strongest over smaller grains. Results suggest that measures of NDVI are an alternative approach for explaining the spatial variability of species richness of birds and butterflies.  相似文献   

5.
The carbon use efficiency (CUE) of a forest, calculated as the ratio of net primary productivity (NPP) to gross primary productivity (GPP), measures how efficiently a forest sequesters atmospheric carbon. Some prior research has suggested that CUE varies with environmental conditions, while other suggests that CUE is constant. Research using Moderate Resolution Imaging Spectroradiometer (MODIS) data has indicated a variable CUE, but those results are suspected because MODIS NPP data have not been well validated.

We tested two questions. First, whether MODIS CUE is constant or whether it varies by forest type, climate, and geographic factors across the eastern USA. Second, whether those results occur when field-based NPP data are employed. We used MODIS model-based estimates of GPP and NPP, and forest inventory and anlaysis (FIA) field-based estimates of NPP data. We calculated two estimates of CUE for forest in 390 km2 hexagons: (1) MODIS CUE as MODIS NPP divided by MODIS GPP and (2) F/M ZCUE as the standardized difference between FIA NPP and MODIS GPP.

MODIS CUE and F/M ZCUE both varied similarly and significantly in relation to forest type, and climatic and geographic factors, strongly supporting a variable rather than a constant CUE. The CUE was significantly higher in deciduous than in mixed and evergreen forests. Regression models indicated that CUE decreased with increases in temperature and precipitation and increased with latitude and altitude. The similar trends in MODIS CUE and F/M ZCUE support the use of the more easily obtained MODIS CUE.  相似文献   

6.
Broad-scale high-temporal frequency satellite imagery is increasingly used for environmental monitoring. While the normalized difference vegetation index (NDVI) is the most commonly used index to track changes in vegetation cover, newer spectral mixture approaches aim to quantify sub-pixel fractions of photosynthesizing vegetation, non-photosynthesizing vegetation, and exposed soil. Validation of the unmixing products is essential to enable confident use of the products for management and decision-making. The most frequently used validation method is by field data collection, but this is very time consuming and costly, in particular in remote regions where access is difficult.

This study developed and demonstrates an alternative method for quantifying land-cover fractions using high-spatial resolution satellite imagery. The research aimed to evaluate the bare soil fraction in a sub-pixel product, MODIS Fract-G, for the natural arid landscapes of the far west of South Australia. Twenty-two sample regions, of 3400 sampling points each, were investigated across several arid land types in the study area. Albedo thresholds were carefully determined in Advanced Land Observing Satellite Panchromatic Remote-sensing Instrument Stereo Mapping (ALOS PRISM) images (2.5 m spatial resolution), which separated predominantly bare soil from predominantly vegetated or covered soil, and created classified images. Correlation analysis was carried out between MODIS Fract-G bare soil fractional cover and ALOS PRISM bare soil proportions for the same areas. Results showed much lower correlations than expected, though limited agreement was found in some specific areas. It is posited that the Moderate Resolution Imaging Spectroradiometer (MODIS) fractional cover product, which is based on unmixing using the NDVI and a cellulose absorption index (CAI) proxy, may be generally unable to separate soil from vegetation in situations where both indices are low. In addition, separation is hampered by the lack of ‘pure pixels’ in this heterogeneous landscape. This suggests that the MODIS fractional cover product, at least in its present form, is unsuited to monitor sparsely vegetated arid landscapes.  相似文献   

7.
8.
In this study we evaluated the potential of the Medium Resolution Imaging Spectrometer (MERIS) Terrestrial Chlorophyll Index (MTCI) for monitoring gross primary productivity (GPP) across fifteen eddy covariance towers encompassing a wide variation in North American vegetation composition. The across-site relationship between MTCI and tower GPP was stronger than that between either the MODIS GPP or EVI and tower GPP, suggesting that data from the MERIS sensor can be used as a valid alternative to MODIS for estimating carbon fluxes. Correlations between tower GPP and both vegetation indices (EVI and MTCI) were similar only for deciduous vegetation, indicating that physiologically driven spectral indices, such as the MTCI, may also complement existing structurally-based indices in satellite-based carbon flux modeling efforts.  相似文献   

9.
Abstract

Certain landscapes in the Sahel and elsewhere consist of a ‘checkerboard’ arrangement of vegetated and non-vegetated areas in which there may be several spectrally distinct vegetation and bare ground components. When individual components form large spatially coherent patches, and the vertical dimension of the vegetation is small, spectral interactions between components are negligible. The influence of any one component on the average reflectance of the landscape can then be described by its spectral properties and relative area using simple additive mixture models. These models can be extended to the vegetation indices. The spatial average normalized difference vegetation index (NDVI) is a function of the brightness (red plus near-infrared reflectances), the NDVI and the fractional cover of the components. In landscapes where soil and vegetation can be considered the only components, the NDVI-brightness model can be inverted to obtain the NDVI of the vegetation. Aerial photoradiometer data from Mali, West Africa were used to determine the red and near-infrared component reflectances of soil and vegetation. The derived soil component reflectances were well correlated with ground measurements. The relationship between the vegetation component NDVI and plant cover was better than between the NDVI of the entire landscape and plant cover. The usefulness of this modelling approach depends on the existence of clearly distinguishable landscape components. The method resolves the spectral properties of individual components, but the vegetation component, while free of the effect of bare ground components, is still affected by the underlying soil.  相似文献   

10.
With the expectation of major shifts in climate, ecologists have focused attention on developing predictive relationships between current climatic conditions and species diversity. Climatic relationships appear best defined at regional rather than local levels. In reference to tree diversity, process-based models that express gross primary production (GPP) as an integrated function of climate seem most appropriate. Since 2000, NASA's MODIS satellite has provided composite data at 16-day intervals to produce estimates of GPP that compare well with direct measurements. The MODIS enhanced vegetation index (EVI), which is independent of climatic drivers, also appears a good surrogate to estimate seasonal patterns in GPP. In this paper we identified 65 out of 84 delineated ecoregions distributed across the contiguous U.S.A., within which sufficient (≥ 200) Federal Inventory and Analysis survey plots were available to predict the total number of tree species, which varied from 17 to 164. Four different formulations of EVI were compared: The annual maximum, the annual integrated, the growing season defined mid-point and growing season averaged values. The growing season mid-point EVI defined the beginning and end of the active growing season. In all formulations of EVI, a polynomial function accounted for about 60% of the observed variation in tree diversity, with additional precision increasing to 80% when highly fragmented ecoregions with < 50% forest cover were excluded. Maps comparing predicted with measured tree richness values show similar patterns except in the Pacific Northwest region where a major extinction of tree genera is known to have occurred during the late Pliocene. The extent that these relationships remain stable under a changing climate can be evaluated by determining if the MODIS climate-driven estimate of GPP continues to match well with EVI patterns and systematic resurveys of forest vegetation indicate that tree species are able to adjust rapidly to climatic variation.  相似文献   

11.
The quality of Earth observation (EO) based vegetation monitoring has improved during recent years, which can be attributed to the enhanced sensor design of new satellites such as MODIS (Moderate Resolution Imaging Spectroradiometer) on Terra and Aqua. It is however expected that sun-sensor geometry variations will have a more visible impact on the Normalized Difference Vegetation Index (NDVI) from MODIS compared to earlier data sources, since noise related to atmosphere and sensor calibration is substantially reduced in the MODIS data stream. For this reason, the effect of varying MODIS viewing geometry on red, near-infrared (NIR) and NDVI needs to be quantified. Data from the geostationary MSG (Meteosat Second Generation) SEVIRI (Spinning Enhanced Visible and Infrared Imager) sensor is well suited for this purpose due to the fixed position of the sensor, the spectral resolution, including a red and NIR band, and the high temporal resolution (15 min) of data, enabling MSG data to be used as a reference for estimating MODIS surface reflectance and NDVI variations caused by varying sun-sensor geometry. The study was performed on data covering West Africa for periods of lowest possible cloud cover for three consecutive years (2004–2006). An analysis covering the entire range of NDVI revealed day-to-day variations in observed MODIS NDVI of 50–60% for medium dense vegetation (NDVI ≈ 0.5) caused by variations in MODIS view zenith angles (VZAs) between nadir and the high forward-scatter view direction. Statistical analysis on red, NIR and NDVI from MODIS and MSG SEVIRI for three transects (characterized by different vegetation densities) showed that both MODIS red and NIR reflectances are highly dependant on MODIS VZA and relative azimuth angle (RAA), due to the anisotropic behaviour of red and NIR reflectances. The anisotropic reflectance in the red and NIR band was to some degree minimized by the ratioing properties of NDVI. The minimization by the NDVI normalization is very dependent on the vegetation density however, since the degree of anisotropy in red and NIR reflectances depends on the amount of vegetation present. MODIS VZA and RAA effects on NDVI were highest for medium dense vegetation (NDVI ≈ 0.5–0.6). The VZA and RAA effects were less for sparsely vegetated areas (NDVI ≈ 0.3–0.35) and the smallest effect on NDVI was found for dense vegetation (NDVI ≈ 0.7). These results have implications for the end users' interpretation of NDVI, and challenge the expediency of the MODIS NDVI compositing technique, which should be refined to distinguish between forward- and backward-scatter viewing direction by taking RAA into account.  相似文献   

12.
Surface emissivity estimation is a significant factor for the land surface temperature estimation from remotely sensed data. For fully vegetated surfaces, the emissivity estimation is performed in a simple manner since the emissivity is relatively uniform. However, for arid land with sparse vegetation, the estimation is more complicated since the emissivity of the exposed soil and rock is highly variable. In this study, mean and difference emissivity for bands 31 and 32 of MODIS sensor have been derived based on NDVI values. First, the NDVI thresholds have been determined to separate bare soil, partially vegetated soil and fully vegetated land. Then regression relations have been derived to estimate mean and difference emissivity of the bare soil samples and partially vegetated surfaces. A constant emissivity is also used for fully vegetated area. Along with the correlations, standard deviations of the regression relations have been examined for a set of representative soil types. Standard deviations smaller than 0.003 in mean emissivity and smaller than 0.004 in difference emissivity are resulted in regression linear relations. Evaluation of the NDVI derived regression relations has been performed using the results of MODIS Day/Night Land Surface Temperature (LST) algorithm on a pair of MODIS images. Using around 45,500 pixels with different soil and land cover types, emissivity of each pixel in bands 31 and 32 have been estimated. The calculated emissivities have been compared with emissivities calculated by MODIS Day/Night LST algorithm. Biases and standard deviations of NDVI-based relations show relatively high agreement for mean and difference emissivity relations with Day/Night method results. It may be concluded that the proposed algorithm can be used as a rather simple alternative to complex emissivity estimation algorithms.  相似文献   

13.
Spatiotemporal data from satellite remote sensing and surface meteorology networks have made it possible to continuously monitor global plant production, and to identify global trends associated with land cover/use and climate change. Gross primary production (GPP) and net primary production (NPP) are routinely derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard satellites Terra and Aqua, and estimates generally agree with independent measurements at validation sites across the globe. However, the accuracy of GPP and NPP estimates in some regions may be limited by the quality of model input variables and heterogeneity at fine spatial scales. We developed new methods for deriving model inputs (i.e., land cover, leaf area, and photosynthetically active radiation absorbed by plant canopies) from airborne laser altimetry (LiDAR) and Quickbird multispectral data at resolutions ranging from about 30 m to 1 km. In addition, LiDAR-derived biomass was used as a means for computing carbon-use efficiency. Spatial variables were used with temporal data from ground-based monitoring stations to compute a six-year GPP and NPP time series for a 3600 ha study site in the Great Lakes region of North America. Model results compared favorably with independent observations from a 400 m flux tower and a process-based ecosystem model (BIOME-BGC), but only after removing vapor pressure deficit as a constraint on photosynthesis from the MODIS global algorithm. Fine-resolution inputs captured more of the spatial variability, but estimates were similar to coarse-resolution data when integrated across the entire landscape. Failure to account for wetlands had little impact on landscape-scale estimates, because vegetation structure, composition, and conversion efficiencies were similar to upland plant communities. Plant productivity estimates were noticeably improved using LiDAR-derived variables, while uncertainties associated with land cover generalizations and wetlands in this largely forested landscape were considered less important.  相似文献   

14.
This study evaluated the influence of upstream inputs into the Moderate Resolution Imaging Spectroradiometer (MODIS) primary productivity products, termed the MOD17, at tropical oil palm plantations (Elaeis guineensis Jacq.). Evaluation of MOD17 using oil palm plantations as test sites is ideal because the plantations are cultivated on large areas which are comparable with the size of MODIS pixels. It is difficult to find test sites covered by other single species in a whole pixel. The upstream inputs studied included (1) MODIS land cover, (2) the National Centers for Environmental Prediction–Department of Energy (NCEP-DOE) Reanalysis 2 meteorological data set, (3) MODIS leaf area index/fraction of photosynthetically active radiation (LAI/fPAR), and (4) MODIS maximum light-use efficiency (maximum LUE). Oil palm biometric and local meteorological data were utilized as ground data. Furthermore, scaling up oil palm LAI and fPAR from plot scale to regional scale (Peninsular Malaysia) was done empirically by correlating oil palm LAI derived from the hemispherical photography technique with radiance information from the Disaster Monitoring Constellation 2 satellite (UK-DMC 2). The upscaled LAI/fPAR developed in this study was used to evaluate the MODIS LAI/fPAR. The results showed that the MODIS land-cover product has an overall accuracy of 78.8% when compared to the Peninsular Malaysia land-use map produced by the Department of Agriculture, Malaysia. Regarding the NCEP-DOE Reanalysis 2 data set, vapour pressure deficit (VPD) and photosynthetically active radiation (PAR) contain large uncertainties in our study area. However, MODIS LAI and fPAR were correlated relatively well with the upscaled LAI (R2 = 0.50) and the upscaled fPAR (R2 = 0.60), respectively. The constant values of maximum LUE for croplands and evergreen broadleaf forest ecosystems are lower than the maximum LUE of oil palm. The relative predictive error assessment showed that the MOD17 net primary productivity (NPP) overestimated oil palm NPP derived from biometric methods by 142–204%. We replaced the upstream inputs of MOD17 by the local inputs for estimating oil palm GPP and NPP in Peninsular Malaysia. This was done by (1) assigning maximum LUE for oil palm plantations as a constant at 1.68 g C m?2 day?1, (2) utilizing meteorological data from local meteorological stations, and (3) using the upscaled fPAR of oil palm plantations. The amount of oil palm GPP and NPP for Peninsular Malaysia in 2010 were estimated to be ~0.09 Pg C year?1 (or equivalent to ~0.33 Pg CO2 year?1) and ~0.03 Pg C year?1 (~0.11 Pg CO2 year?1), respectively, indicating that oil palm plantations in Peninsular Malaysia can play an important role in global carbon sequestration. In the future there is likely to be a demand for MODIS GPP and NPP products that are more accurate than those currently generated by MOD17. We recommend future developments of the MOD17 processing system to allow improvements in the upstream input parameters, in the manner described in this article, both for global processing and for the production of more accurate values for GPP and NPP at regional and local scales.  相似文献   

15.
Ashfall and pyroclastic flows from the large eruption of June 1991 destroyed much of the vegetation on the flanks of Mt. Pinatubo. Subsequent vegetation recovery has helped stabilize slopes and reduce debris flow hazard. In this project, visible and near-infrared (VNIR) satellite imagery from the advanced spaceborne thermal emission and reflection radiometer (ASTER) captured at a similar time of year in 2001, 2004 and 2008 were used to quantify vegetation recovery within 22 upland watersheds on the mountain, 10–16 years after the eruption took place. Differences in the normalized difference vegetation index (NDVI) derived from these images were used to measure the areal extent of losses and gains in ground cover and derive average net rates of change in ground cover. The success of this approach was dependent on post-processing ASTER imagery to correct for the effects of variation in satellite-sun geometry and vegetation reflectance and to calibrate and adjust the derived NDVI images for the influence of different atmospheric conditions at the time of image capture. All watersheds showed a variable pattern of losses and gains in vegetation and ground cover. Losses were related to shifting cultivation practices and gully and channel migration, and these amounted to 1–12% of watershed areas. Gains were related to revegetation of pyroclastic flows, recent channel terraces, abandoned gardens and areas of burnt vegetation, and these amounted to 3–45% of watershed areas. Consistent overall net gains in ground cover were observed in all watersheds, with the average NDVI increasing by up to 0.074 over each consecutive 3-year period. The rates of change in NDVI were used to derive a vegetation recovery curve from bare ground. The result showed that it will take approximately 50 years for hillslopes to regain a dense vegetative cover in this climate. This supports published findings which indicate rapid recovery of vegetation in tropical environments following such large volcanic eruptions. Results additionally showed that the trajectory of change and the speed of recovery were influenced by terrain type, geology, watershed morphology and the activity of erosion and depositional processes. Prior to 2001, revegetation had been fastest on mountain slopes that helped protect vegetation from the effects of eruption. Gains in ground cover are now greatest in areas that were most impacted by the eruption.  相似文献   

16.
MODIS NDVI与MODIS EVI的比较分析   总被引:11,自引:0,他引:11  
MODIS NDVI与MODIS EVI是目前应用比较广泛的植被指数,MODIS EVI是对NDVI的发展和延续,从植被指数计算公式和合成方法两方面做了改进。具体表现在:避免了MODIS NDVI在植被高覆盖区易饱和的问题,考虑了土壤背景对植被指数的影响,对气溶胶等残留做了进一步校正,采用BRDF/CV-MVC合成方法保证了合成采用最佳像元。EVI时间序列相较于NDVI时间序列季节性更明显,能够更好地反映高植被覆盖区的季节性变化特征,并且很少有突降现象,时间序列曲线较平滑。EVI的这些优势为高覆盖植被物候特征的季节性变化监测提供了新的思路。  相似文献   

17.
Binary snow maps and fractional snow cover data are provided routinely from MODIS (Moderate Resolution Imaging Spectroradiometer). This paper investigates how the wide observation angles of MODIS influence the current snow mapping algorithm in forested areas. Theoretical modeling results indicate that large view zenith angles (VZA) can lead to underestimation of fractional snow cover (FSC) by reducing the amount of the ground surface that is viewable through forest canopies, and by increasing uncertainties during the gridding of MODIS data. At the end of the MODIS scan line, the total modeled error can be as much as 50% for FSC. Empirical analysis of MODIS/Terra snow products in four forest sites shows high fluctuation in FSC estimates on consecutive days. In addition, the normalized difference snow index (NDSI) values, which are the primary input to the MODIS snow mapping algorithms, decrease as VZA increases at the site level. At the pixel level, NDSI values have higher variances, and are correlated with the normalized difference vegetation index (NDVI) in snow covered forests. These findings are consistent with our modeled results, and imply that consideration of view angle effects could improve MODIS snow monitoring in forested areas.  相似文献   

18.
One of the most frequently applied methods for integrating controls on primary production through satellite data is the light use efficiency (LUE) approach, which links vegetation gross or net primary productivity (GPP or NPP) to remotely sensed estimates of absorbed photosynthetically active radiation (APAR). Eddy covariance towers provide continuous measurements of carbon flux, presenting an opportunity for evaluation of satellite estimates of GPP. Here we investigate relationships between eddy covariance estimated GPP, environmental variables derived from flux towers, Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index (EVI) and GPP across African savanna ecosystems. MODIS GPP was found to underestimate GPP at the majority of sites, particularly at sites in the Sahel. EVI was found to correlate well with estimated GPP on a site-by-site basis. Combining EVI with tower-measured PAR and evaporative fraction (EF, a measure of water sufficiency) improved the direct relationship between GPP and EVI at the majority of the sites. The slope of this relationship was strongly related to site peak leaf area index (LAI). These results are promising for the extension of GPP through the use of remote sensing data to a regional or even continental scale.  相似文献   

19.
The Moderate Resolution Imaging Radiometer (MODIS) is the primary instrument in the NASA Earth Observing System for monitoring the seasonality of global terrestrial vegetation. Estimates of 8-day mean daily gross primary production (GPP) at the 1 km spatial resolution are now operationally produced by the MODIS Land Science Team for the global terrestrial surface using a production efficiency approach. In this study, the 2001 MODIS GPP product was compared with scaled GPP estimates (25 km2) based on ground measurements at two forested sites. The ground-based GPP scaling approach relied on a carbon cycle process model run in a spatially distributed mode. Land cover classification and maximum annual leaf area index, as derived from Landsat ETM+ imagery, were used in model initiation. The model was driven by daily meteorological observations from an eddy covariance flux tower situated at the center of each site. Model simulated GPPs were corroborated with daily GPP estimates from the flux tower. At the hardwood forest site, the MODIS GPP phenology started earlier than was indicated by the scaled GPP, and the summertime GPP from MODIS was generally lower than the scaled GPP values. The fall-off in production at the end of the growing season was similar to the validation data. At the boreal forest site, the GPP phenologies generally agreed because both responded to the strong signal associated with minimum temperature. The midsummer MODIS GPP there was generally higher than the ground-based GPP. The differences between the MODIS GPP products and the ground-based GPPs were driven by differences in the timing of FPAR and the magnitude of light use efficiency as well as by differences in other inputs to the MODIS GPP algorithm—daily incident PAR, minimum temperature, and vapor pressure deficit. Ground-based scaling of GPP has the potential to improve the parameterization of light use efficiency in satellite-based GPP monitoring algorithms.  相似文献   

20.
This study explores the use of the relationship between the normalized difference vegetation index (NDVI) and the shortwave infrared ratio (SWIR32) vegetation indices (VI) to retrieve fractional cover over the structurally complex natural vegetation of the Cerrado of Brazil using a time series of imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS). Data from the EO-1 Hyperion sensor with 30 m pixel resolution is used to sample geographic and seasonal variation in NDVI, SWIR32, and the hyperspectral cellulose absorption index (CAI), and to derive end-member values for photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV), and bare soil (BS) from a suite of protected and/or natural vegetation sites across the Cerrado. The end-members derived from relatively pure 30 m pixels are then applied to a 500 m pixel resolution MODIS time series using linear spectral unmixing to retrieve PV, NPV, and BS fractional cover (FPV, FNPV, and FBS). The two-way interaction response of MODIS-equivalent NDVI and SWIR32 was examined for regions of interest (ROI) collected within protected areas and nearby converted lands. The MODIS NDVI, SWIR32 and retrieved FPV, FNPV, and FBS are then compared to detailed cover and structural composition data from field sites, and the influence of the structural and compositional variation on the VIs and cover fractions is explored. The hyperion ROI analysis indicated that the two-way NDVI–SWIR32 response behaved as an effective surrogate for the two-way NDVI–CAI response for the campo limpo/grazed pasture to cerrado sensu stricto woody gradient. The SWIR32 sensitivity to the NPV and BS variation increased as the dry season progressed, but Cerrado savannah exhibited limited dynamic range in the NDVI–CAI and NDVI–SWIR32 two-way responses compared to the entire landscape, which also comprises fallow croplands and forests. Validation analysis of MODIS retrievals with Quickbird-2 images produced an RMSE value of 0.13 for FPV. However, the RMSE values of 0.16 and 0.18 for FBS and FNPV, respectively, were large relative to the seasonal and inter-annual variation. Analysis of site composition and structural data in relation to the MODIS-derived NDVI, SWIR32 and FPV, FNPV, and FBS, indicated that the VI signal and derived cover fractions were influenced by a complex mix of structure and cover but included a strong year-to-year seasonal effect. Therefore, although the MODIS NDVI–SWIR32 response could be used to retrieve cover fractions across all Cerrado land covers including bare cropland, pastures and forests, sensitivity may be limited within the natural Cerrado due to sub-pixel heterogeneity and limited BS and NPV sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号