首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyperspectral remote sensing is a proven technology for measurement of coastal ocean colour, including sea‐bed mapping in optically shallow waters. Using hyperspectral imagery of shallow (<15 m deep) sea bed acquired with the Compact Airborne Spectrographic Imager (CASI‐550), we examined how changes in the spatial resolution of bathymetric grids, created from sonar data (echosounding) and input to conventional image classifiers, affected the accuracy of distributional maps of invasive (Codium fragile ssp. tomentosoides) and native (kelp) seaweeds off the coast of Nova Scotia, Canada. The addition of a low‐resolution bathymetric grid, interpolated from soundings by the Canadian Hydrographic Service, improved the overall classification accuracies by up to ~10%. However, increasing the bathymetric resolution did not increase the accuracy of classification maps produced with the supervised (Maximum Likelihood) classifier as shown by a slightly lower accuracy (2%) when using an intermediate‐resolution bathymetric grid interpolated from soundings with a recreational fish finder. Supervised classifications using the first three eigenvectors from a principal‐components analysis were consistently more accurate (by at least 27%) than unsupervised (K‐means classifier) schemes with similar data compression. With an overall accuracy of 76%, the most reliable scheme was a supervised classification with low‐resolution bathymetry. However, the supervised approach was particularly sensitive, and variations in accuracy of 2% resulted in overestimations of up to 53% in the extent of C. fragile and kelp. The use of a passive optical bathymetric algorithm to derive a high‐resolution bathymetric grid from the CASI data showed promise, although fundamental differences between this grid and those created with the sonar data limited the conclusions. The bathymetry (at any spatial resolution) appeared to improve the accuracy of the classifications both by reducing the confusion among the spectral classes and by removing noise in the image data. Variations in the accuracy of depth estimates and inescapable positional inaccuracies in the imagery and ground data largely accounted for the observed differences in the classification accuracies. This study provides the first detailed demonstration of the advantages and limitations of integrating digital bathymetry with hyperspectral data for the mapping of benthic assemblages in optically shallow waters.  相似文献   

2.
Burn severity is mapped after wildfires to evaluate immediate and long-term fire effects on the landscape. Remotely sensed hyperspectral imagery has the potential to provide important information about fine-scale ground cover components that are indicative of burn severity after large wildland fires. Airborne hyperspectral imagery and ground data were collected after the 2002 Hayman Fire in Colorado to assess the application of high resolution imagery for burn severity mapping and to compare it to standard burn severity mapping methods. Mixture Tuned Matched Filtering (MTMF), a partial spectral unmixing algorithm, was used to identify the spectral abundance of ash, soil, and scorched and green vegetation in the burned area. The overall performance of the MTMF for predicting the ground cover components was satisfactory (r2 = 0.21 to 0.48) based on a comparison to fractional ash, soil, and vegetation cover measured on ground validation plots. The relationship between Landsat-derived differenced Normalized Burn Ratio (dNBR) values and the ground data was also evaluated (r2 = 0.20 to 0.58) and found to be comparable to the MTMF. However, the quantitative information provided by the fine-scale hyperspectral imagery makes it possible to more accurately assess the effects of the fire on the soil surface by identifying discrete ground cover characteristics. These surface effects, especially soil and ash cover and the lack of any remaining vegetative cover, directly relate to potential postfire watershed response processes.  相似文献   

3.
We tested the utility of imaging spectroscopy and neural networks to map phosphorus concentration in savanna grass using airborne HyMAP image data. We also sought to ascertain the key wavelengths for phosphorus prediction using hyperspectral remote sensing. The remote sensing of foliar phosphorus has received very little attention as compared to nitrogen, yet it plays an equally important role in explaining the distribution and feeding patterns of herbivores. Band depths from two continuum‐removed absorption features as well as the red edge position (REP) were input into a backpropagation neural network. Following a series of experiments to ascertain the optimum wavelengths, the best trained neural network was used to predict and ultimately to map grass phosphorus concentration in the Kruger National Park. The results indicate that the best trained neural network could predict phosphorus distribution with a coefficient of determination of 0.63 and a root mean square error (RMSE) of 0.07 (28% of the mean observed phosphorus concentration) on an independent test data set. Our results also show that the absorption feature located in the shortwave infrared (R 2015–2199) contains more information on phosphorus distribution, a region that has hardly been explored before in most spectroscopic experiments for phosphorus as compared to the visible bands. Overall, the study demonstrates the potential of imaging spectroscopy in mapping grass phosphorus concentration in savanna rangelands.  相似文献   

4.
Image registration is a key step in a great variety of biomedical imaging applications. It provides the ability to geometrically align one dataset with another, and is a prerequisite for all imaging applications that compare datasets across subjects, imaging modalities, or across time. Registration algorithms also enable the pooling and comparison of experimental findings across laboratories, the construction of population-based brain atlases, and the creation of systems to detect group patterns in structural and functional imaging data. We review the major types of registration approaches used in brain imaging today. We focus on their conceptual basis, the underlying mathematics, and their strengths and weaknesses in different contexts. We describe the major goals of registration, including data fusion, quantification of change, automated image segmentation and labeling, shape measurement, and pathology detection. We indicate that registration algorithms have great potential when used in conjunction with a digital brain atlas, which acts as a reference system in which brain images can be compared for statistical analysis. The resulting armory of registration approaches is fundamental to medical image analysis, and in a brain mapping context provides a means to elucidate clinical, demographic, or functional trends in the anatomy or physiology of the brain.  相似文献   

5.
Hyperspectral data acquired by Geophysical Environmental Research (GER) Imaging Spectrometer were used for remote bathymetry in the Hudson/ Raritan estuarine waters. Characteristics of the GER image verified by in situ sea truth data indicated that water quality parameters, (i.e., organic/inorganic particulate), were largely uniform during the time of data acquisition. This condition coupled with the uniformity of bottom type provided an opportunity for quantitative bathymetric mapping. Bathymetric data were obtained from a direct ship sampling/bathymetry survey. GER data were used to simulate the spectral response of Landsat-5 TM to define advantages of GER data for bathymetric mapping. It was concluded that under the attending conditions radiometric resolution is at least as important as hyperspectral selectivity for bathymetric applications. However the potential for hyperspectral instruments such as GER to increase radiometric resolution by integrating data within optimal band-widths must be considered a significant advantage for bathymetric mapping.  相似文献   

6.
高光谱影像波段选择算法研究   总被引:6,自引:0,他引:6  
基于高光谱影像数据的特点,分析了高光谱数据的降维方法。着重探讨了波段选择的若干算法:熵及联合熵、最佳指数因子、自动子空间划分、自适应波段选择、波段指数和最优波段指数等算法。分析了各种算法的有效性、局限性和计算复杂度,并针对波段指数的不足,设计了最优波段指数(OBI)波段选择新算法。最后通过具体的试验,验证了各种算法的性能。  相似文献   

7.
Hyperspectral images are captured from hundreds of narrow and contiguous bands from the visible to infrared regions of electromagnetic spectrum. Each pixel of an image is represented by a vector where the components of the vector constitute the reflectance value of the surface for each of the bands. The length of the vector is equal to the number of bands. Due to the presence of large number of bands, classification of hyperspectral images becomes computation intensive. Moreover, higher correlation among neighboring bands increases the redundancy among them. As a result, feature selection becomes very essential for reducing the dimensionality. In the proposed work, an attempt has been made to develop a supervised feature selection technique guided by evolutionary algorithms. Self-adaptive differential evolution (SADE) is used for feature subset generation. Generated subsets are evaluated using a wrapper model where fuzzy k-nearest neighbor classifier is taken into consideration. Our proposed method also uses a feature ranking technique, ReliefF algorithm, for removing duplicate features. To demonstrate the effectiveness of the proposed method, investigation is carried out on three sets of data and the results are compared with four other evolutionary based state-of-the-art feature selection techniques. The proposed method shows promising results compared to others in terms of overall classification accuracy and Kappa coefficient.  相似文献   

8.
Multi- and hyperspectral imaging and data analysis has been investigated in the last decades in the context of various fields of application like remote sensing or microscopic spectroscopy. However, recent developments in sensor technology and a growing number of application areas require a more generic view on data analysis, that clearly expands the current, domain-specific approaches. In this context, we address the problem of interactive exploration of multi- and hyperspectral data, consisting of (semi-)automatic data analysis and scientific visualization in a comprehensive fashion. In this paper, we propose an approach that enables a generic interactive exploration and easy segmentation of multi- and hyperspectral data, based on characterizing spectra of an individual dataset, the so-called endmembers. Using the concepts of existing endmember extraction algorithms, we derive a visual analysis system, where the characteristic spectra initially identified serve as input to interactively tailor a problem-specific visual analysis by means of visual exploration. An optional outlier detection improves the robustness of the endmember detection and analysis. An adequate system feedback of the costly unmixing procedure for the spectral data with respect to the current set of endmembers is ensured by a novel technique for progressive unmixing and view update which is applied at user modification. The progressive unmixing is based on an efficient prediction scheme applied to previous unmixing results. We present a detailed evaluation of our system in terms of confocal Raman microscopy, common multispectral imaging and remote sensing.  相似文献   

9.
Principal component analysis (PCA) is one of the most commonly adopted feature reduction techniques in remote sensing image analysis. However, it may overlook subtle but useful information if applied directly to the analysis of hyperspectral data, especially for discriminating between different vegetation types. In order to accurately map an invasive plant species (horse tamarind, Leucaena leucocephala) in southern Taiwan using Hyperion hyperspectral imagery, this study developed a spectrally segmented PCA based on the spectral characteristics of vegetation over different wavelength regions. The developed algorithm can not only reduce the dimensionality of hyperspectral imagery but also extracts helpful information for differentiating more effectively the target plant species from other vegetation types. Experiments conducted in this study demonstrated that the developed algorithm performs better than correlation‐based segmented principal component transformation (SPCT) and conventional PCA (overall accuracy: 86%, 76%, 66%; kappa value: 0.81, 0.69, 0.57) in detecting the target plant species, as well as mapping other vegetation covers.  相似文献   

10.
Reedbeds are important habitats for supporting biodiversity and delivering a range of ecosystem services, yet reedbeds in the UK are under threat from intensified agriculture, changing land use and pollution. To develop appropriate conservation strategies, information on the distribution of reedbeds is required. Field surveys of these wetland environments are difficult, time consuming and expensive to execute for large areas. Remote sensing has the potential to replace or complement such field surveys, yet the specific application to reedbed habitats has not been fully investigated. In the present study, airborne hyperspectral and LiDAR imagery were acquired for two sites in Cumbria, UK. The research aimed to determine the most effective means of analysing hyperspectral data covering the visible, near infrared (NIR) and shortwave infrared (SWIR) regions for mapping reedbeds and to investigate the effects of incorporating image textural information and LiDAR-derived measures of canopy structure on the accuracy of reedbed delineation. Due to the high dimensionality of the hyperspectral data, three image compression algorithms were evaluated: principal component analysis (PCA), spectrally segmented PCA (SSPCA) and minimum noise fraction (MNF). The LiDAR-derived measures tested were the canopy height model (CHM), digital surface model (DSM) and the DSM-derived slope map. The SSPCA-compressed data produced the highest reedbed accuracy and processing efficiency. The optimal SSPCA dataset incorporated 12 PCs comprised of the first 3 PCs derived from each of the spectral segments: visible (392-700 nm), NIR (701-972 nm), SWIR-1 (973-1366 nm) and SWIR-2 (1530-2240 nm). Incorporating image textural measures produced a significant improvement in the classification accuracy when using MNF-compressed data, but had no impact when using the SSPCA-compressed imagery. A significant improvement (+ 11%) in the accuracy of reedbed delineation was achieved when a mask generated by applying a 3 m threshold to the LiDAR-derived CHM was used to filter the reedbed map derived from the optimal SSPCA dataset. This paper demonstrates the value in combining appropriately compressed hyperspectral imagery with LiDAR data for the effective mapping of reedbed habitats.  相似文献   

11.
Invasive nonindigenous plants are threatening the biological integrity of North American rangelands, as well as the economies that are supported by those ecosystems. Spatial information is critical to fulfilling invasive plant management strategies. Traditional invasive plant mapping has utilized ground-based hand or GPS mapping. The shortfalls of ground-based methods include the limited spatial extent covered and the associated time and cost. Mapping vegetation with remote sensing covers large spatial areas and maps can be updated at an interval determined by management needs. The objective of the study was to map leafy spurge (Euphorbia esula L.) and spotted knapweed (Centaurea maculosa Lam.) using 128-band hyperspectral (5-m and 3-m resolution) imagery and assess the accuracy of the resulting maps. Beiman Cutler classifications (BCC) were used to classify the imagery using the randomForest package in the R statistical program. BCC builds multiple classification trees by repeatedly taking random subsets of the observational data and using random subsets of the spectral bands to determine each split in the classification trees. The resulting classification trees vote on the correct classification. Overall accuracy was 84% for the spotted knapweed classification, with class accuracies ranging from 60% to 93%; overall accuracy was 86% for the leafy spurge classification, with class accuracies ranging from 66% to 93%. Our results indicate that (1) BCC can achieve substantial improvements in accuracy over single classification trees with these data and (2) it might be unnecessary to have separate accuracy assessment data when using BCC, as the algorithm provides a reliable internal estimate of accuracy.  相似文献   

12.
ABSTRACT

Due to the instantaneous field-of-view (IFOV) of the sensor and diversity of land cover types, some pixels, usually named mixed pixels, contain more than one land cover type. Soft classification can predict the portion of each land cover type in mixed pixels in the absence of spatial distribution. The spatial distribution information in mixed pixels can be solved by super resolution mapping (SRM). Typically, SRM involves two steps: soft class value estimation, which is similar to the image super resolution of image restoration, and land cover allocation. A new SRM approach utilizes a deep image prior (DIP) strategy combined with a super resolution convolutional neural network (SRCNN) to estimate fine resolution fraction images for each land cover type; then, a simple and efficient classifier is used to allocate subpixel land cover types under the constraint of the generated fine fraction images. The proposed approach can use prior information of input images to update network parameters and no longer require training data. Experiments on three different cases demonstrate that the subpixel classification accuracy of the proposed DIP-based SRM approach is significantly better than the three conventional SRM approaches and a transfer learning-based neural network SRM approach. In addition, the DIP-SRM approach performs very robustly about small-area objects within multiple land cover types and significantly reduces soft classification uncertainty. The results of this paper provide an extension for utilizing SRCNN to address SRM issues in hyperspectral images.  相似文献   

13.
This study focuses on mapping surface minerals using a new hyperspectral thermal infrared (TIR) sensor: the spatially enhanced broadband array spectrograph system (SEBASS). SEBASS measures radiance in 128 contiguous spectral channels in the 7.5- to 13.5-μm region with a ground spatial resolution of 2 m. In September 1999, three SEBASS flight lines were acquired over Virginia City and Steamboat Springs, Nevada. At-sensor data were corrected for atmospheric effects using an empirical method that derives the atmospheric characteristics from the scene itself, rather than relying on a predicted model. The apparent surface radiance data were reduced to surface emissivity using an emissivity normalization technique to remove the effects of temperature. Mineral maps were created with a pixel classification routine based on matching instrument- and laboratory-measured emissivity spectra, similar to methods used for other hyperspectral data sets (e.g. AVIRIS). Linear mixtures of library spectra match SEBASS spectra reasonably well, and silicate and sulfate minerals mapped remotely, agree with the dominant minerals identified with laboratory X-ray powder diffraction and spectroscopic analyses of field samples. Though improvements in instrument calibration, atmospheric correction, and information extraction would improve the ability to map more pixels, these hyperspectral TIR data nevertheless show significant advancement over multispectral thermal imaging by mapping surface materials and lithologic units with subtle spectral differences in mineralogy.  相似文献   

14.
The Kam Kotia mine tailings areas near Timmins in Ontario, Canada have been generating and discharging acidic mine drainage (AMD) into the surrounding areas for more than 35 years, killing large areas of forest and polluting the local water system. This paper presents results from the remote sensing monitoring programme in the Kam Kotia mine. Hyperspectral TRW (Thompson Ramo Wooldridge Inc.) Imaging Spectrometer III data were acquired over the Kam Kotia mine and tailings areas. This paper describes (1) the data pre‐processing (noise removal, atmospheric correction, spectral smile correction, scene‐based calibration) needed to radiometrically calibrate the images and (2) a novel procedure which combines constrained spectral mixture analysis and threshold‐based classification. With this developed procedure one can retrieve fraction maps of major mine tailings‐related surface materials and hence generate a surface map separating green vegetation, transition zones, dead vegetation, and oxidized tailings, and calculate the extent (surficial area) of each of the zones. The four zones are correlated with the extent and degree of vegetation cover affected by tailings material and are interpreted to span respectively from very low to medium, high, and very high AMD pollution. This procedure can be used to monitor changes in the course of the boundary between affected zones and finally quantify the rehabilitation process in mine tailings areas with high vegetation cover.  相似文献   

15.
A Portable Infrared Mineral Analyzer II (PIMA II) field spectrometer was used to measure infrared reflectance spectra (1·3-2·5 μm) of split drill core at 1 cm intervals in both the along-core and cross-core directions. These data were formatted into an image cube similar to that acquired by an imaging spectrometer with 600 spectral channels, and multi-spectral and hyperspectral analysis techniques were used for analysis. Colour images and enhancements provided visual displays of the spectral information, while real-time digital extraction of individual spectra allowed identification of minerals. Absorption band-depth mapping and spectral classification were used to map the spatial distribution of specific minerals in the core. Linear spectral unmixing provided estimated mineral abundances. Analysis results demonstrate that multi-spectral and hyperspectral image analysis methods can be used to produce detailed mineralogical maps of drill core. They suggest that the concepts and analytical techniques developed for analysis of hyperspectral image data can be applied to field and laboratory spectra in a variety of disciplines, and raise the question of the use of hyperspectral scanners in the laboratory.  相似文献   

16.
Probabilistic classification under the Gaussian mixture model is normally based on posterior probability (p.p.) estimates of class membership. The question, how accurate they are for a given pixel, is traditionally left without attention, which may lead to unreasonable optimism about the classification results obtained. Addressing the issue, Koltunov and Ben‐Dor have proposed an unsupervised, lower confidence bound (l.c.b.)‐based method for thematic interpretation of remote sensing data. This method predicts the sampling properties of the p.p. estimators of a given pixel, to assess reliability of the estimates. The present paper describes a modified version of the method. In particular, instead of defining the l.c. bounds in terms of two first moments of the sampling distribution, as has been suggested previously, we use percentiles. Combining this with a probabilistic model of supervised identification of the mixture components yields the post‐classification uncertainty value for a given pixel and the confidence level, at which this value is proven to be maximal. In the application to an arid landscape in the Southern Negev desert, Israel, the compressed raw hyperspectral data acquired by the Digital Airborne Imaging Spectrometer (DIAS‐7915) was clustered once, whereas two thematic tasks were solved corresponding to different map legends, identification procedures, and the associated requirements to the level of detail and reliability of the thematic maps. The reference data collected in the field have provided evidence for accurate algorithmically estimated confidence bounds of the classification quality. The classification has revealed new information about the geomorphological subunits forming the study area.  相似文献   

17.
The Odiel River (Huelva, southwest Spain) carries acidic water originating from mine waste contamination, including massive sulphide ore deposits. As the river approaches the coastal estuary, tidal factors influence both sediment and water dynamics. As water velocity decreases, sediment load transport capacity also decreases, building river bars consisting of boulders upstream and sands downstream. Salt water near the estuary affects river water chemistry by neutralizing acidity derived from mine wastes. The occurrence of pyrite mud and hydrated iron sulphate efflorescence, precipitated from acidic waters, is plugged by marine water with chloride, which precipitates from the salt water. Hymap airborne hyperspectral data were used to evaluate tidal influence using spectral features. Grain size variations on river pebble bars, localized crusts of variably hydrated iron sulphate and oxides and cation exchange with chloride salts in the lower river segment as it enters the estuary were spectrally described and mapped. The presence of vegetation proved particularly problematic for the spectral identification of contamination products as well as the precise delineation of inundated areas along the river. The transition from dry to wet zones is the crucial challenge in using spectral imagery to identify and track contaminants in the river and along its flood plain. The use of a reference mineralogical spectral library, developed in the laboratory, requires a careful geological context evaluation to provide efficient environmental information on contamination parameters. Based on hyperspectral analyses of critical spectral features, river locations that may be a key for tracing significant, future contaminant fluctuations were identified.  相似文献   

18.
Timely and accurate identification of tree species by spectral methods is crucial for forest and urban ecological management. In this study, a total of 394 reflectance spectra (between 350 and 2500 nm) from foliage branches or canopy of 11 important urban forest broadleaf species were measured in the City of Tampa, Florida, USA with a spectrometer. The 11 species include American elm (Ulmus americana), bluejack oak (Quercus incana), crape myrtle (Lagerstroemia indica), laurel oak (Q. laurifolia), live oak (Q. virginiana), southern magnolia (Magnolia grandiflora), persimmon (Diospyros virginiana), red maple (Acer rubrum), sand live oak (Q. geminata), American sycamore (Platanus occidentalis), and turkey oak (Q. laevis). A total of 46 spectral variables, including normalized spectra, derivative spectra, spectral vegetation indices, spectral position variables, and spectral absorption features were extracted and analysed from the in situ hyperspectral measurements. Two classification algorithms were used to identify the 11 broadleaf species: a nonlinear artificial neural network (ANN) and a linear discriminant analysis (LDA). An analysis of variance (ANOVA) indicates that the 30 selected spectral variables are effective to differentiate the 11 species. The 30 selected spectral variables account for water absorption features at 970, 1200, and 1750 nm and reflect characteristics of pigments and other biochemicals in tree leaves, especially variability of chlorophyll content in leaves. The experimental results indicate that both classification algorithms (ANN and LDA) have produced acceptable accuracies (overall accuracy from 86.3% to 87.8%, kappa from 0.83 to 0.87) and have a similar performance for classifying the 11 broadleaf species with input of the 30 selected spectral variables. The preliminary results of identifying the 11 species with the in situ hyperspectral data imply that with current remote sensing techniques, including high spatial and spectral resolution data, it is still difficult but possible to identify similar species to such 11 broadleaf species with an acceptable accuracy.  相似文献   

19.
Ashe juniper (Juniperus ashei Buchholz) in excessive coverage reduces forage production, interferes with livestock management, and degrades watersheds and wildlife habitat on infested rangelands. The objective of this study was to apply minimum noise fraction (MNF) transformation and different classification techniques to airborne hyperspectral imagery for mapping Ashe juniper infestations. Hyperspectral imagery with 98 usable bands covering a spectral range of 475–845 nm was acquired from two Ashe juniper infested sites in central Texas. MNF transformation was applied to the hyperspectral imagery and the transformed imagery with the first 10 and 20 MNF bands was classified using four hard classifiers: minimum distance, Mahalanobis distance, maximum likelihood and spectral angle mapper (SAM). For comparison, the 10‐ and 20‐band MNF imagery was inversely transformed to noise‐reduced 98‐band imagery in the original data space, which was also classified using the four classifiers. Accuracy assessment showed that the first 10 MNF bands were sufficient for distinguishing Ashe juniper from associated plant species (mixed woody species and mixed herbaceous species) and other cover types (bare soil and water). Although the 20‐band MNF imagery provided better results for some classifications, the increase in overall accuracy was not statistically significant. Overall accuracy on the 10‐band MNF imagery varied from 88% for SAM to 93% for minimum distance for site 1 and from 84% for SAM to 94% for maximum likelihood for site 2. The 98‐band imagery derived from the 10‐band MNF imagery resulted in overall accuracy ranging from 91% for both SAM and Mahalanobis distance to 97% for maximum likelihood for site 1 and from 87% for SAM to 93% for minimum distance for site 2. Although both approaches produced comparable classification results, the MNF imagery required smaller storage space and less computing time. These results indicate that airborne hyperspectral imagery incorporated with image transformation and classification techniques can be a useful tool for mapping Ashe juniper infestations.  相似文献   

20.
Compact Airborne Spectrographic Imager (CASI) hyperspectral data is used to investigate the effects of topography on the selection of spectral end members, and to assess whether the topographic correction improves the discrimination of rock units for lithologic mapping. A publicly available Digital Elevation Model (DEM), at a scale of 1:50,000, is used to model the radiance variation of the scene as a function of topography, assuming a Lambertian surface. Skylight is estimated and removed from the airborne data using a dark object correction. The CASI data is corrected on a pixel-by-pixel basis to normalize the scene to a uniform solar illumination and viewing geometry. The results show that topography has the effect of expanding end member clusters at times resulting in the overlap of clusters and that the correction process can effectively reduce the variation in detected radiance due to changes in local illumination. When topographic effects are embedded in the hyperspectral data, methods typically used for the selection of end members, such as the convex hull method, can miss end members or result in the selection of nonrepresentative pixels as end members. Thus, end members selected by some conventional methods are very likely “incomplete” or “nonrepresentative” if the topographic effect is embedded in the data. As shown in this study, the topographic correction can reveal hidden end members and achieve a better representation of end members via the statistical center of isolated clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号