共查询到20条相似文献,搜索用时 15 毫秒
1.
A geodesic distance-based approach to build the neighborhood graph for isometric embedding is proposed to deal with the highly twisted and folded manifold by Wen et al. [Using locally estimated geodesic distance to optimize neighborhood graph for isometric data embedding, Pattern Recognition 41 (2008) 2226-2236]. This comment is to identify the error in their example and the ineffectiveness of their algorithm. 相似文献
2.
3.
4.
Yang L 《IEEE transactions on pattern analysis and machine intelligence》2006,28(5):827-831
Isometric data embedding using geodesic distance requires the construction of a connected neighborhood graph so that the geodesic distance between every pair of data points can be estimated. This paper proposes an approach for constructing k-connected neighborhood graphs. The approach works by applying a greedy algorithm to add each edge, in a nondecreasing order of edge length, to a neighborhood graph if end vertices of the edge are not yet k-connected on the graph. The k-connectedness between vertices is tested using a network flow technique by assigning every vertex a unit flow capacity. This approach is applicable to a wide range of data. Experiments show that it gives better estimation of geodesic distances than other approaches, especially when the data are undersampled or nonuniformly distributed. 相似文献
5.
Neural Computing and Applications - Unfortunately, this article has been published with incorrect title. 相似文献
6.
The dynamical neighborhood selection based on the sampling density and manifold curvature for isometric data embedding 总被引:1,自引:0,他引:1
The construction of the neighborhood is a critical problem of manifold learning. Most of manifold learning algorithms use a stable neighborhood parameter (such as k-NN), but it may not work well for the entire manifold, since manifold curvature and sampling density may vary over the manifold. Although some dynamical neighborhood algorithms have been proposed, they are limited by either another global parameter or an assumption. This paper proposes a new approach to select the dynamical neighborhood for each point while constructing the tangent subspace based on the sampling density and the manifold curvature. And the parameters of the approach can be automatically determined by computing the correlation coefficient of the matrices of geodesic distances between pairs of points in input and output spaces. When we apply it to ISOMAP, the results of experiments on the synthetic data as well as the real world patterns demonstrate that the proposed approach can efficiently maintain an accurate low dimensional representation of the manifold data with less distortion, and give higher average classification rate compared to others. 相似文献
7.
8.
In this paper a novel subspace learning method called discriminant neighborhood embedding (DNE) is proposed for pattern classification. We suppose that multi-class data points in high-dimensional space tend to move due to local intra-class attraction or inter-class repulsion and the optimal embedding from the point of view of classification is discovered consequently. After being embedded into a low-dimensional subspace, data points in the same class form compact submanifod whereas the gaps between submanifolds corresponding to different classes become wider than before. Experiments on the UMIST and MNIST databases demonstrate the effectiveness of our method. 相似文献
9.
10.
Antonio Robles-Kelly Author Vitae Edwin R. Hancock Author Vitae 《Pattern recognition》2007,40(3):1042-1056
In this paper, we make use of the relationship between the Laplace-Beltrami operator and the graph Laplacian, for the purposes of embedding a graph onto a Riemannian manifold. To embark on this study, we review some of the basics of Riemannian geometry and explain the relationship between the Laplace-Beltrami operator and the graph Laplacian. Using the properties of Jacobi fields, we show how to compute an edge-weight matrix in which the elements reflect the sectional curvatures associated with the geodesic paths on the manifold between nodes. For the particular case of a constant sectional curvature surface, we use the Kruskal coordinates to compute edge weights that are proportional to the geodesic distance between points. We use the resulting edge-weight matrix to embed the nodes of the graph onto a Riemannian manifold. To do this, we develop a method that can be used to perform double centring on the Laplacian matrix computed from the edge-weights. The embedding coordinates are given by the eigenvectors of the centred Laplacian. With the set of embedding coordinates at hand, a number of graph manipulation tasks can be performed. In this paper, we are primarily interested in graph-matching. We recast the graph-matching problem as that of aligning pairs of manifolds subject to a geometric transformation. We show that this transformation is Pro-crustean in nature. We illustrate the utility of the method on image matching using the COIL database. 相似文献
11.
Xuelong Li Stephen Lin Shuicheng Yan Dong Xu 《IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics》2008,38(2):342-352
Graph-embedding along with its linearization and kernelization provides a general framework that unifies most traditional dimensionality reduction algorithms. From this framework, we propose a new manifold learning technique called discriminant locally linear embedding (DLLE), in which the local geometric properties within each class are preserved according to the locally linear embedding (LLE) criterion, and the separability between different classes is enforced by maximizing margins between point pairs on different classes. To deal with the out-of-sample problem in visual recognition with vector input, the linear version of DLLE, i.e., linearization of DLLE (DLLE/L), is directly proposed through the graph-embedding framework. Moreover, we propose its multilinear version, i.e., tensorization of DLLE, for the out-of-sample problem with high-order tensor input. Based on DLLE, a procedure for gait recognition is described. We conduct comprehensive experiments on both gait and face recognition, and observe that: 1) DLLE along its linearization and tensorization outperforms the related versions of linear discriminant analysis, and DLLE/L demonstrates greater effectiveness than the linearization of LLE; 2) algorithms based on tensor representations are generally superior to linear algorithms when dealing with intrinsically high-order data; and 3) for human gait recognition, DLLE/L generally obtains higher accuracy than state-of-the-art gait recognition algorithms on the standard University of South Florida gait database. 相似文献
12.
Building k edge-disjoint spanning trees of minimum total length for isometric data embedding 总被引:3,自引:0,他引:3
Yang L 《IEEE transactions on pattern analysis and machine intelligence》2005,27(10):1680-1683
Isometric data embedding requires construction of a neighborhood graph that spans all data points so that geodesic distance between any pair of data points could be estimated by distance along the shortest path between the pair on the graph. This paper presents an approach for constructing k-edge-connected neighborhood graphs. It works by finding k edge-disjoint spanning trees the sum of whose total lengths is a minimum. Experiments show that it outperforms the nearest neighbor approach for geodesic distance estimation. 相似文献
13.
为解决局部线性嵌入算法(LLE)性能受初始邻域值大小和相似性度量选取的制约,提出一种基于密度和相关分量分析(relevant component analysis,RCA)的局部线性嵌入算法(DRLLE).对每一个样本点计算一个密度缩放因子,根据密度缩放因子对样本点的初始邻域值进行自适应调整,计算RCA距离作为LLE算法的相似性度量,得到样本点的近邻集,进行降维处理.将DRLLE和其它LLE改进算法在Swiss roll、Swiss roll hole和ORL数据库上进行对比实验,其结果表明,DRLLE算法具有良好的降维效果和识别性能. 相似文献
14.
Neighborhood preserving embedding (NPE) is a linear approximation to the locally linear embedding algorithm which can preserve the local neighborhood structure on the data manifold. However, in typical face recognition where the number of data samples is smaller than the dimension of data space, it is difficult to directly apply NPE to high dimensional matrices because of computational complexity. Moreover, in such case, NPE often suffers from the singularity problem of eigenmatrix, which makes the direct implementation of the NPE algorithm almost impossible. In practice, principal component analysis or singular value decomposition is applied as a preprocessing step to attack these problems. Nevertheless, this strategy may discard dimensions that contain important discriminative information and the eigensystem computation of NPE could be unstable. Towards a practical dimensionality reduction method for face data, we develop a new scheme in this paper, namely, the complete neighborhood preserving embedding (CNPE). CNPE transforms the singular generalized eigensystem computation of NPE into two eigenvalue decomposition problems. Moreover, a feasible and effective procedure is proposed to alleviate the computational burden of high dimensional matrix for typical face image data. Experimental results on the ORL face database and the Yale face database show that the proposed CNPE algorithm achieves better performance than other feature extraction methods, such as Eigenfaces, Fisherfaces and NPE, etc. 相似文献
15.
为解决社会关系网络图中节点没有坐标值、不能采用传统的欧几里得距离和曼哈坦距离进行聚类的问题,提出采用最短路径算法,来衡量点与点之间的相异度.针对最短路径算法具有时间复杂度大的缺点,引入基于参考节点嵌入的最短距离估算思想来估算两点之间的近似距离.在此基础上,针对DBLP数据集构成的社会关系网络图进行聚类,使用基于划分的k-medoids算法,分别采用以上两种距离算法,比较其优劣.实验证明改进后的算法和最短路径算法中的Dijkstra 算法相比,距离误差率小,时间复杂度大大降低,在提高效率的同时,取得了同样好的聚类效果. 相似文献
16.
Jie Gui Zhenan Sun Wei Jia Rongxiang Hu Yingke Lei Shuiwang Ji 《Pattern recognition》2012,45(8):2884-2893
Sparse subspace learning has drawn more and more attentions recently. However, most of the sparse subspace learning methods are unsupervised and unsuitable for classification tasks. In this paper, a new sparse subspace learning algorithm called discriminant sparse neighborhood preserving embedding (DSNPE) is proposed by adding the discriminant information into sparse neighborhood preserving embedding (SNPE). DSNPE not only preserves the sparse reconstructive relationship of SNPE, but also sufficiently utilizes the global discriminant structures from the following two aspects: (1) maximum margin criterion (MMC) is added into the objective function of DSNPE; (2) only the training samples with the same label as the current sample are used to compute the sparse reconstructive relationship. Extensive experiments on three face image datasets (Yale, Extended Yale B and AR) demonstrate the effectiveness of the proposed DSNPE method. 相似文献
17.
18.
19.
20.
《Computer Vision and Image Understanding》2009,113(7):777-789
This paper shows how to construct a generative model for graph structure through the embedding of the nodes of the graph in a vector space. We commence from a sample of graphs where the correspondences between nodes are unknown ab initio. We also work with graphs where there may be structural differences present, i.e. variations in the number of nodes in each graph and their edge structure. We characterise the graphs using the heat-kernel, and this is obtained by exponentiating the Laplacian eigensystem with time. The idea underpinning the method is to embed the nodes of the graphs into a vector space by performing a Young-Householder decomposition of the heat-kernel into an inner product of node co-ordinate matrices. The co-ordinates of the nodes are determined by the eigenvalues and eigenvectors of the Laplacian matrix, together with a time-parameter which can be used to scale the embedding. Node correspondences are located by applying Scott and Longuet-Higgins algorithm to the embedded nodes. We capture variations in graph structure using the covariance matrix for corresponding embedded point positions. We construct a point-distribution model for the embedded node positions using the eigenvalues and eigenvectors of the covariance matrix. We show how to use this model to both project individual graphs into the eigenspace of the point position covariance matrix and how to fit the model to potentially noisy graphs to reconstruct the Laplacian matrix. We illustrate the utility of the resulting method for shape analysis using data from the Caltech–Oxford and COIL databases. 相似文献