共查询到20条相似文献,搜索用时 15 毫秒
1.
P Factor C Senne V Dumasius K Ridge HA Jaffe B Uhal Z Gao JI Sznajder 《Canadian Metallurgical Quarterly》1998,18(6):741-749
Ron (the receptor for Macrophage Stimulating Protein) has never been implicated before in human malignancies or in cell transformation. In this report we show that Ron can acquire oncogenic potential by means of two amino acid substitutions-D1232V and M1254T-affecting highly conserved residues in the tyrosine kinase domain. The same mutations in Kit and Ret have been found associated with two human malignancies, mastocytosis and Multiple Endocrine Neoplasia type 2B (MEN2B), respectively. Both mutations caused Ron-mediated transformation of 3T3 fibroblasts and tumour formation in nude mice. Moreover, cells transformed by the oncogenic Ron mutants displayed high metastatic potential. The Ron mutant receptors were constitutively active and the catalytic efficiency of the mutated kinase was higher than that of wild-type Ron. Oncogenic Ron mutants enhanced activation of the Ras/MAPK cascade with respect to wild type Ron, without affecting the JNK/SAPK pathway. Expression of Ron mutants in 3T3 fibroblasts led to different patterns of tyrosine-phos-phorylated proteins. These data show that point mutations altering catalytic properties and possibly substrate specificity of the Ron kinase may force cells toward tumorigenesis and metastasis. 相似文献
2.
We have previously purified and characterized a nervous system-specific glycoprotein antigen from adult Drosophila heads, designated Nervana [nerve antigen (NRV)] and identified two separate genes coding for three different proteins. All three proteins share homology with the beta subunits of Na+,K+-ATPase from various other species. In this study we have isolated a new Drosophila Na+,K+-ATPase alpha subunit cDNA clone (PSalpha; GenBank accession no. AF044974) and demonstrate expression of functional Na+,K+-ATPase activity when PSalpha mRNA is coinjected into Xenopus oocytes along with any of the three different Nrv mRNAs. Western blotting, RNase protection assays, and immunocytochemical staining of adult fly sections indicate that NRV2 is expressed primarily in the nervous system. Staining is most intense in the brain and thoracic ganglia and is most likely associated with neuronal elements. NRV1 is more broadly expressed in muscle and excretory tissue and also shows diffuse distribution in the nervous system. Similar to other species, Drosophila expresses multiple isoforms of Na+,K+-ATPase subunits in a tissue- and cell type-specific pattern. It will now be possible to use the advantages of Drosophila molecular and classical genetics to investigate the phenotypic consequences of altering Na+,K+-ATPase expression in various cell and tissue types. 相似文献
3.
The alpha-2 subunit abundance of Na+,K(+)-ATPase in the rat heart has been reported to be reduced in several induced hypertensive models. To determine whether this reduction also occurs in a genetic model of hypertension, we studied expression of the alpha subunits in left ventricles of spontaneously hypertensive rats (SHR), and normotensive Wistar-Kyoto (WKY) and Sprague-Dawley rats using Western blotting and quantitative dot-blotting analysis with monoclonal antibodies. While the alpha-1 subunit was not affected in any of the strains, a significant reduction of the alpha-2 subunit expression was noted in 19-week-old SHRs, but not in age-matched WKY and Sprague-Dawley rats, supporting the hypothesis that elevated arterial pressure may differentially downregulate the alpha-2 subunit in the rat heart. To further test this hypothesis we designed experiments in which hypertensive rats were treated with the antihypertensive agents hydralazine and nifedipine. Both agents effectively normalized the blood pressure in the SHRs with no significant effect on the blood pressure in the WKY and Sprague-Dawley rats. The alpha-2 subunit in SHRs treated with hydralazine and nifedipine showed a 63.3% (n = 6, P < 0.05, analysis of variance and Fischer's test) and a 27.4% increase, respectively, over the hypertensive SHR controls, although the reversal effect of nifedipine did not quite reach significance. The alpha-1 subunit expression was not affected by any of the drug treatments. No effect of either of the drugs on the alpha-1 or alpha-2 subunit was observed in the WKY or Sprague-Dawley rat groups. These data support our hypothesis that the alpha-2 subunit may be a pressure-sensitive isoform of the cardiac Na+,K(+)-ATPase and that high blood pressure is, directly or indirectly, responsible for the reduction of the alpha-2 subunit protein expression. 相似文献
4.
The kinetics of K+-stimulated dephosphorylation of the Na+,K+-ATPase were investigated at pH 7.4, 24 degrees C, and an ATP concentration of 1.0 mM via the stopped-flow technique using the fluorescent label RH421. Two different mixing procedures were used: (a) premixing with ATP to allow phosphorylation to go to completion, followed by mixing with KCl; and (b) simultaneous mixing with ATP and KCl. Using mixing procedure (a), the dephosphorylation rate constant of enzyme complexed with K+ ions could be determined directly to be =366 s-1 and the rate constant for spontaneous dephosphorylation (without K+) =60 s-1. The K+ concentration dependence of the observed reciprocal time constant showed half-saturation at a K+ concentration of 2.4-2.6 mM with positive cooperativity involved in the occupation of the K+ binding sites on the E2P conformation of the enzyme. Using mixing procedure (b), it was found that at saturating K+ concentrations the dephosphorylation of the enzyme is rate-limited by its phosphorylation, which occurs with a rate constant of approximately 190 s-1 (1). These results show that all reactions occurring after phosphorylation and prior to dephosphorylation, i.e., the E1P to E2P conformational transition as well as Na+ release and K+ binding steps, must be fast (>190 s-1). 相似文献
5.
To identify the origins and structures of mammalian tissue-derived Na+,K+-ATPase inhibitors, we investigated the tissue distribution of inhibitors in rats. Among many tissues tested, urine was found to contain high levels of many inhibitors. The structures of the two major inhibitors were identified as neoconvalloside and periplogenin monorhamnoside, which are derivatives of strophanthidin. Urinary levels of these inhibitors, however, decreased considerably after changing the diet from the regular diet to purified synthetic diet, suggesting that the majority of the urinary inhibitors are of dietary origin. Investigation of the ingredients of the diet further revealed that alfalfa meal and ground oats are the major sources of these cardiac glycosides. As to the physiological relevance of the cardiac glycosides, a low concentration (1-50 nM) of ouabain dose-dependently enhanced aldosterone secretion from adrenal glomerulosa cells by an increase in local renin release. Ouabain was also found to be involved in AT2 receptor-specific expression in rat PC12W cells through an increment in intracellular Na+. These results suggest that Na+,K+-ATPase inhibitors, regardless of the source, are involved in the regulation of blood pressure. 相似文献
6.
Previous experiments from our laboratory (Codina, J., Kone, B. C., Delmas-Mata, J. T., and DuBose, T. D., Jr. (1996) J. Biol. Chem. 271, 29759-29763) demonstrated that the alpha-subunit of the colonic H+, K+-ATPase (HKalpha2) requires coexpression with a beta-subunit to support H+/K+ transport in a heterologous expression system (Xenopus laevis oocytes). In these studies, HKalpha2 formed stable and functional alpha.beta complexes when coexpressed with either the rat beta1-subunit of the Na+,K+-ATPase or the beta-subunit of the gastric H+,K+-ATPase, suggesting that different beta-subunits may interact with HKalpha2. The present studies tested this hypothesis by development and application of a specific antibody against HKalpha2 peptide. Subsequently, immunoprecipitation experiments were performed to determine if HKalpha2 co-precipitates with the same beta-subunit in organs known to express HKalpha2 protein. The data demonstrate that HKalpha2 assembles with beta1-Na+,K+-ATPase in the renal medulla and in distal colon. 相似文献
7.
Ibogaine (Endabuse) is a psychoactive indole alkaloid found in the West African shrub, Tabernanthe iboga. This drug interrupts cocaine and amphetamine abuse and has been proposed for treatment of addiction to these stimulants. However, the mechanism of action that explains its pharmacological properties is unclear. Since previous studies demonstrated differential effects of psychotomimetic drugs (cocaine and methamphetamine) on neuropeptides such as neurotensin (NT), the present study was designed to determine: (1) the effects of ibogaine on striatal, nigral, cortical, and accumbens neurotensin-like immunoreactivity (NTLI); (2) the effects of selective dopamine antagonists on ibogaine-induced changes in NT concentrations in these brain areas; and (3) the effects of ibogaine pretreatment on cocaine-induced changes in striatal, nigral, cortical and accumbens NTLI content. Ibogaine treatments profoundly affected NT systems by increasing striatal, nigral, and accumbens NTLI content 12 h after the last drug administration. In contrast, NTLI concentrations were not significantly increased in the frontal cortex after ibogaine treatment. The ibogaine-induced increases in NTLI in striatum, nucleus accumbens and substantia nigra were blocked by coadministration of the selective D1 receptor antagonist, SCH 23390. The D2 receptor antagonist, eticlopride, blocked the ibogaine-induced increase in nigral NTLI, but not in striatum and nucleus accumbens. Ibogaine pretreatment significantly blocked the striatal and nigral increases of NTLI resulting from a single cocaine administration. Whereas many of the responses by NT systems to ibogaine resembled those which occur after cocaine, there were also some important differences. These data suggest that NT may contribute to an interaction between ibogaine and the DA system and may participate in the pharmacological actions of this drug. 相似文献
8.
T Haruna M Horie I Kouchi R Nawada K Tsuchiya M Akao H Otani T Murakami S Sasayama 《Canadian Metallurgical Quarterly》1998,98(25):2905-2910
BACKGROUND: We reported that digoxin abolishes the infarct size (IS)-limiting effect of ischemic preconditioning (IPC). Because ATP-sensitive K+ (KATP) channels are involved in IPC, we studied whether Na+,K+-ATPase and KATP channels functionally interact, thereby modulating IPC. METHODS AND RESULTS: Rabbits received 30 minutes of coronary artery occlusion followed by 3 hours of reperfusion. IPC was elicited by 5 minutes of occlusion followed by 10 minutes of reperfusion. The IS, expressed as a percentage of the area at risk, was 40.2+/-2.8% in control and 39.8+/-5.0% in digoxin pretreatment rabbits. Both IPC and pretreatment with cromakalim, a KATP channel opener, reduced IS to 11.8+/-1.8% and 13.4+/-2.6% (P<0. 05 versus control). Digoxin abolished the reduction in IS induced by IPC (33.5+/-3.3%), whereas it did not change that induced by cromakalim (18.8+/-3.0%). In patch-clamp experiments, digoxin was found to inhibit the opening of KATP channels in single ventricular myocytes in which ATP depletion had been induced by metabolic stress. In contrast, digoxin had little effect on the channel opening induced by cromakalim. Moreover, the inhibitory action of digoxin on channel activities was dependent on subsarcolemmal ATP concentration. CONCLUSIONS: The IS-limiting effect of IPC is modulated by an interaction between KATP channels and Na+,K+-ATPase through subsarcolemmal ATP. 相似文献
9.
D Lichtstein M Steinitz I Gati S Samuelov J Deutsch J Orly 《Canadian Metallurgical Quarterly》1998,20(5-6):573-579
The biosynthesis of digitalis-like compounds (DLC) was determined in bovine and rat adrenal homogenates by following changes in the concentration of DLC using three independent sensitive bioassays: inhibition of [3H]-ouabain binding to red blood cells and competitive ouabain and bufalin ELISA. The amounts of DLC in bovine and rat adrenal homogenates, as measured by the two first bioassays, increased with time when the mixtures were incubated under tissue culture conditions. These results suggest that Na+, K+-ATPase inhibitors which interact with ouabain antibodies, but not those which interact with bufalin antibodies, are synthesized in bovine and rat adrenals. 相似文献
10.
DJ Kane K Fendler E Grell E Bamberg K Taniguchi JP Froehlich RJ Clarke 《Canadian Metallurgical Quarterly》1997,36(43):13406-13420
The kinetics of Na+-dependent partial reactions of the Na+,K+-ATPase were investigated via the stopped-flow technique using the fluorescent labels RH421 and BIPM. After the enzyme is mixed with MgATP, both labels give almost identical kinetic responses. Under the chosen experimental conditions two exponential time functions are necessary to fit the data. The dominant fast phase, 1/tau1 approximately 180 s-1 (saturating [ATP] and [Na+], pH 7.4 and 24 degrees C), is attributed to phosphorylation of the enzyme and a subsequent conformational change (E1ATP(Na+)3 --> E2P(Na+)3 + ADP). The rate of the phosphorylation reaction measured by the acid quenched-flow technique was 190 s-1 at 100 microM ATP, suggesting that phosphorylation controls the kinetics of the RH421 signal and that the conformational change is very fast (>/=600 s-1). The rate of the RH421 signal was optimal at pH 7.5. The Na+ concentration dependence of 1/tau1 showed half-saturation at a Na+ concentration of 8-10 mM with positive cooperativity involved in the occupation of the Na+ binding sites. The apparent dissociation constant of the high affinity ATP binding site determined from the ATP concentration dependence of 1/tau1 was 7.0 (+/-0.6) microM, while the apparent Kd for the low affinity site and the rate constant for the E2 to E1 conformational change evaluated in the absence of Mg2+ were 143 (+/-17) microM and = 28 s-1. At RH421 concentrations in the micromolar range, a decrease in the value of 1/tau1 is observed. On the basis of rapid quenched-flow measurements, this inhibition can be attributed to a reaction step subsequent to phosphorylation. This accounts for previously observed kinetic discrepancies between RH421 and BIPM. 相似文献
11.
Ensheathment and myelination of axons by Schwann cells in the peripheral nervous system requires contact with a basal lamina. The molecular mechanism(s) by which the basal lamina promotes myelination is not known but is likely to reflect the activity of integrins expressed by Schwann cells. To initiate studies on the role of integrins during myelination, we characterized the expression of two integrin subunits, beta 1 and beta 4, in an in vitro myelination system and compared their expression to that of the glial adhesion molecule, the myelin-associated glycoprotein (MAG). In the absence of neurons, Schwann cells express significant levels of beta 1 but virtually no beta 4 or MAG. When Schwann cells are cocultured with dorsal root ganglia neurons under conditions promoting myelination, expression of beta 4 and MAG increased dramatically in myelinating cells, whereas beta 1 levels remained essentially unchanged. (In general agreement with these findings, during peripheral nerve development in vivo, beta 4 levels also increase during the period of myelination in sharp contrast to beta 1 levels which show a striking decrease.) In cocultures of neurons and Schwann cells, beta 4 and MAG appear to colocalize in nascent myelin sheaths but have distinct distributions in mature sheaths, with beta 4 concentrated in the outer plasma membrane of the Schwann cell and MAG localized to the inner (periaxonal) membrane. Surprisingly, beta 4 is also present at high levels with MAG in Schmidt-Lanterman incisures. Immunoprecipitation studies demonstrated that primary Schwann cells express beta 1 in association with the alpha 1 and alpha 6 subunits, while myelinating Schwann cells express alpha 6 beta 4 and possibly alpha 1 beta 1. beta 4 is also downregulated during Wallerian degeneration in vitro, indicating that its expression requires continuous Schwann cell contact with the axon. These results indicate that axonal contact induces the expression of beta 4 during Schwann cell myelination and suggest that alpha 6 beta 4 is an important mediator of the interactions of myelinating Schwann cells with the basal lamina. 相似文献
12.
Parallel arrays of Na+/H+ and Cl-/HCO3- antiporters are believed to catalyze the first step of transepithelial electrolyte secretion in lacrimal glands by coupling Na+ and Cl- influxes across acinar cell basolateral membranes. Tracer uptake methods were used to confirm the presence of Na+/H+ antiport activity in membrane vesicles isolated from rabbit lacrimal gland fragments. Outwardly-directed H+ gradients accelerated 22Na+ uptake, and amiloride inhibited 96% of the H+ gradient-dependent 22Na+ flux. Amiloride-sensitive 22Na+ influx was half-maximal at an extravesicular Na+ concentration of 14 mM. In vitro stimulation of isolated lacrimal acini with 10 microM carbachol for 30 min increased Na+/H+ antiport activity of a subsequently isolated basolateral membrane sample 2.5-fold, but it did not significantly affect Na+/H+ antiport activity measured in intracellular membrane samples. The same treatment increased basolateral membrane Na+,K(+)-ATPase activity 1.4-fold; this increase could be accounted for by decreases in the Na+,K(+)-ATPase activities of intracellular membranes. Thus, it appears that cholinergic stimulation causes recruitment of additional Na+,K(+)-ATPase pump units to the acinar cell basolateral plasma membrane. The mechanistic basis of the increase in basolateral membrane Na+/H+ antiport activity remains unclear. 相似文献
13.
Na+,K(+)-ATPase was reconstituted in vesicles prepared by a dialysis method. Ion-exchange chromatography was used to obtain well characterized fractions from the inhomogeneous vesicle preparation. Lipid and protein content was determined by optical methods during the elution process. It was possible to separate fractions with distinct enzymatic and transport activities. A protocol was set up, which allowed to calculate the average number of 5-IAF labeled ion pumps per vesicle in the different fractions. The dependence of the number of protein molecules per vesicle was studied as function of the initial protein concentration added to the lipid solution before dialysis. The transport activity disappears completely at very low protein concentrations (3.3 micrograms protein per mg lipid). This observation is in favor of the proposal discussed in the literature, that the heterodimer (alpha beta)2 is the transport-active form of the Na+,K(+)-ATPase. The presented method can be applied to all reconstituted vesicle preparations in which the proteins can be labeled quantitatively with a fluorescence dye. 相似文献
14.
N Hernando P Martin-Vasallo S Ghosh PK Ghosh A Swaroop M Coca-Prados 《Canadian Metallurgical Quarterly》1994,1189(1):109-111
A method was proposed for analysis of conformational mobility of supranucleosomal chromatin organization at different ionic conditions with the help of electrophoresis in low-density agarose gels. This simple and highly reproducible method yields the results which are in good agreement with the data of other traditional approaches. This method offers an alternative to high-speed ultracentrifugation for chromatin condensation studies. 相似文献
15.
Ion-sensitive endogenous regulators of Na+,K+-ATPase obtained from epithelium of rat small intestine
From epithelial layer of rat intestinal were selected water soluble substances which influenced on Na+,K(+)-ATPase activity in 2 different ways: substances with molecular weight 220 Da, 400 Da were its activators, substance with weight 150 Da-inhibitor. Na+,K(+)-ATPase activators preincubated previously with Na+ acquire properties of inhibitors. Bivalent cations Ca, Mg remove this effect of Na-ions. 相似文献
16.
There are differing views regarding the roles of phosphatidylinositol 3-kinases (PI3-kinases) and p70 S6 kinase (p70s6k) in growth factor-induced cellular responses. One approach that is widely employed to investigate these roles is to use the inhibitors, wortmannin and rapamycin, respectively. This approach is used here to study the responses in macrophages to colony stimulating factor-1 (CSF-1). Wortmannin (> or = 30 nM) and rapamycin (> or = 3 nM) both weakly inhibited CSF-1-stimulated DNA synthesis in murine bone marrow-derived macrophages (BMM), suggesting that there are PI3-kinase- and p70s6k-independent pathways required for the onset of S phase; interestingly the combination of the drugs gave dramatic suppression. Inhibition of DNA synthesis by rapamycin on the BMM was much less than that observed with the CSF-1-dependent cell line, BAC1.2F5. In BMM, wortmannin suppressed CSF-1-stimulated increase in p70s6k activity indicating that PI3-kinase activity may lie upstream. In contrast to some other growth factor/cell systems, no evidence was obtained using the inhibitors for the involvement of PI3-kinase or p70s6k in CSF-1-mediated induction of c-fos mRNA expression or Erk-1 activity; in addition, no evidence was found for an involvement in the CSF-1-mediated increase in cyclin D1 expression or STAT activation. The findings reinforce the need to study the signal transduction cascades relevant to each individual growth factor and preferably not in cell lines. 相似文献
17.
AV Chibalin CH Pedemonte AI Katz E Féraille PO Berggren AM Bertorello 《Canadian Metallurgical Quarterly》1998,273(15):8814-8819
Inhibition of Na+,K+-ATPase activity by dopamine is an important mechanism by which renal tubules modulate urine sodium excretion during a high salt diet. However, the molecular mechanisms of this regulation are not clearly understood. Inhibition of Na+,K+-ATPase activity in response to dopamine is associated with endocytosis of its alpha- and beta-subunits, an effect that is protein kinase C-dependent. In this study we used isolated proximal tubule cells and a cell line derived from opossum kidney and demonstrate that dopamine-induced endocytosis of Na+,K+-ATPase and inhibition of its activity were accompanied by phosphorylation of the alpha-subunit. Inhibition of both the enzyme activity and its phosphorylation were blocked by the protein kinase C inhibitor bisindolylmaleimide. The early time dependence of these processes suggests a causal link between phosphorylation and inhibition of enzyme activity. However, after 10 min of dopamine incubation, the alpha-subunit was no longer phosphorylated, whereas enzyme activity remained inhibited due to its removal from the plasma membrane. Dephosphorylation occurred in the late endosomal compartment. To further examine whether phosphorylation was a prerequisite for subunit endocytosis, we used the opossum kidney cell line transfected with the rodent alpha-subunit cDNA. Treatment of this cell line with dopamine resulted in phosphorylation and endocytosis of the alpha-subunit with a concomitant decrease in Na+,K+-ATPase activity. In contrast, none of these effects were observed in cells transfected with the rodent alpha-subunit that lacks the putative protein kinase C-phosphorylation sites (Ser11 and Ser18). Our results support the hypothesis that protein kinase C-dependent phosphorylation of the alpha-subunit is essential for Na+,K+-ATPase endocytosis and that both events are responsible for the decreased enzyme activity in response to dopamine. 相似文献
18.
B Vilsen 《Canadian Metallurgical Quarterly》1993,333(1-2):44-50
An allelic variant of the ouabain-insensitive rat kidney Na+,K(+)-ATPase alpha 1-isoform was identified by chance in a cDNA library. The variant differed from the wild-type rat kidney Na+,K(+)-ATPase by a single G-to-C base substitution in the cDNA, which on amino acid level gave rise to a glutamine in place of the glutamate residue Glu329 previously suggested as a likely donator of oxygen ligands for Na+ and K+ binding. The variant cDNA was transfected into COS-1 cells and the transfectants expanded with success into stable cell lines that were able to grow in the presence of a concentration of ouabain highly cytotoxic to the parental cells containing only the endogenous COS-1 cell Na+,K(+)-ATPase. Under these conditions, the viability of the cells depended on the cation transport mediated by the ouabain-insensitive Glu329-->Gln variant, whose cDNA was shown by polymerase chain reaction amplification to be stably integrated into the COS-1 cell genome. The maximum specific ATP hydrolysis activity of isolated plasma membranes of the Glu329-->Gln variant did not differ significantly from that of plasma membranes containing the wild type. A method was established for measurement of the phosphorylation capacity of the expressed Glu329-->Gln variant and wild-type enzyme, and it was thereby demonstrated that the variant had a turnover number similar if not identical to that of the wild-type. 相似文献
19.
20.
AV Chibalin G Ogimoto CH Pedemonte TA Pressley AI Katz E Féraille PO Berggren AM Bertorello 《Canadian Metallurgical Quarterly》1999,274(4):1920-1927
Dopamine inhibits Na+,K+-ATPase activity in renal tubule cells. This inhibition is associated with phosphorylation and internalization of the alpha subunit, both events being protein kinase C-dependent. Studies of purified preparations, fusion proteins with site-directed mutagenesis, and heterologous expression systems have identified two major protein kinase C phosphorylation residues (Ser-11 and Ser-18) in the rat alpha1 subunit isoform. To identify the phosphorylation site(s) that mediates endocytosis of the subunit in response to dopamine, we have performed site-directed mutagenesis of these residues in the rat alpha1 subunit and expressed the mutated forms in a renal epithelial cell line. Dopamine inhibited Na+,K+-ATPase activity and increased alpha subunit phosphorylation and clathrin-dependent endocytosis into endosomes in cells expressing the wild type alpha1 subunit or the S11A alpha1 mutant, and both effects were blocked by protein kinase C inhibition. In contrast, dopamine did not elicit any of these effects in cells expressing the S18A alpha1 mutant. While Ser-18 phosphorylation is necessary for endocytosis, it does not affect per se the enzymatic activity: preventing endocytosis with wortmannin or LY294009 blocked the inhibitory effect of dopamine on Na+,K+-ATPase activity, although it did not alter the increased alpha subunit phosphorylation induced by this agonist. We conclude that dopamine-induced inhibition of Na+, K+-ATPase activity in rat renal tubule cells requires endocytosis of the alpha subunit into defined intracellular compartments and that phosphorylation of Ser-18 is essential for this process. 相似文献