首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
Purpose

To improve the precision of a free-breathing 3D saturation-recovery-based myocardial T1 mapping sequence using a post-processing 3D denoising technique.

Methods

A T1 phantom and 15 healthy subjects were scanned on a 1.5 T MRI scanner using 3D saturation-recovery single-shot acquisition (SASHA) for myocardial T1 mapping. A 3D denoising technique was applied to the native T1-weighted images before pixel-wise T1 fitting. The denoising technique imposes edge-preserving regularity and exploits the co-occurrence of 3D spatial gradients in the native T1-weighted images by incorporating a multi-contrast Beltrami regularization. Additionally, 2D modified Look-Locker inversion recovery (MOLLI) acquisitions were performed for comparison purposes. Accuracy and precision were measured in the myocardial septum of 2D MOLLI and 3D SASHA T1 maps and then compared. Furthermore, the accuracy and precision of the proposed approach were evaluated in a standardized phantom in comparison to an inversion-recovery spin-echo sequence (IRSE).

Results

For the phantom study, Bland–Altman plots showed good agreement in terms of accuracy between IRSE and 3D SASHA, both on non-denoised and denoised T1 maps (mean difference −1.4 ± 18.9 ms and −4.4 ± 21.2 ms, respectively), while 2D MOLLI generally underestimated the T1 values (69.4 ± 48.4 ms). For the in vivo study, there was a statistical difference between the precision measured on 2D MOLLI and on non-denoised 3D SASHA T1 maps (P = 0.005), while there was no statistical difference after denoising (P = 0.95).

Conclusion

The precision of 3D SASHA myocardial T1 mapping was substantially improved using a 3D Beltrami regularization based denoising technique and was similar to that of 2D MOLLI T1 mapping, while preserving the higher accuracy and whole-heart coverage of 3D SASHA.

  相似文献   

2.
Objective

Phantoms are often used to estimate the geometric accuracy in magnetic resonance imaging (MRI). However, the distortions may differ between anatomical and phantom images. This study aimed to investigate the applicability of a phantom-based and a test-subject-based method in evaluating geometric distortion present in clinical head-imaging sequences.

Materials and methods

We imaged a 3D-printed phantom and test subjects with two MRI scanners using two clinical head-imaging 3D sequences with varying patient-table positions and receiver bandwidths. The geometric distortions were evaluated through nonrigid registrations: the displaced acquisitions were compared against the ideal isocenter positioning, and the varied bandwidth volumes against the volume with the highest bandwidth. The phantom acquisitions were also registered to a computed tomography scan.

Results

Geometric distortion magnitudes increased with larger table displacements and were in good agreement between the phantom and test-subject acquisitions. The effect of increased distortions with decreasing receiver bandwidth was more prominent for test-subject acquisitions.

Conclusion

Presented results emphasize the sensitivity of the geometric accuracy to positioning and imaging parameters. Phantom limitations may become an issue with some sequence types, encouraging the use of anatomical images for evaluating the geometric accuracy.

  相似文献   

3.
Purpose: To implement and evaluate two robust methods for T1-and T2-weighted snapshot imaging of the heart with data acquisition within a single heart beat and suppression of blood signal. Methods: Both Tl-and T2-weighted diastolic images of the heart can be obtained with half Fourier single-shot turbo spin echo (HASTE) and turbo fast low-angle shot (turboFLASH) sequences, respectively, in less than 350 ms. Signal from flowing blood in the ventricles and large vessels can be suppressed by a preceding inversion recovery preparing pulse pair (PRESTO). Fifteen volunteers and five patients have been evaluated quantitatively for signal-to-noise ratio (SNR) contrast-to-noise ratio (CNR) and flow void and qualitatively for image quality, artifacts, and black-blood effect. Results: Both PRESTO-HASTE and PRESTO-turboFLASH achieved consistently good image quality and blood signal suppression. In contrast to gradient-echo (GRE) echo-planar imaging techniques, (EPI) HASTE and turboFLASH are much less sensitive to local susceptibility differences in the thorax, resulting in a more robust imaging technique without the need for time-consuming system tuning. Compared to standard spin-echo sequences with cardiac triggering, HASTE and turboFLASH have significantly shorter image acquisition times and are not vulnerable to respiratory motion artifacts. Conclusion: PRESTO-HASTE and PRESTO-turboFLASH constitute suitable methods for fast and high-quality cardiac magnetic resonance imaging (MRI).  相似文献   

4.

Objective

Partial volume (PV) correction is an important step in arterial spin labeling (ASL) MRI that is used to separate perfusion from structural effects when computing the mean gray matter (GM) perfusion. There are three main methods for performing this correction: (1) GM-threshold, which includes only voxels with GM volume above a preset threshold; (2) GM-weighted, which uses voxel-wise GM contribution combined with thresholding; and (3) PVC, which applies a spatial linear regression algorithm to estimate the flow contribution of each tissue at a given voxel. In all cases, GM volume is obtained using PV maps extracted from the segmentation of the T1-weighted (T1w) image. As such, PV maps contain errors due to the difference in readout type and spatial resolution between ASL and T1w images. Here, we estimated these errors and evaluated their effect on the performance of each PV correction method in computing GM cerebral blood flow (CBF).

Materials and methods

Twenty-two volunteers underwent scanning using 2D echo planar imaging (EPI) and 3D spiral ASL. For each PV correction method, GM CBF was computed using PV maps simulated to contain estimated errors due to spatial resolution mismatch and geometric distortions which are caused by the mismatch in readout between ASL and T1w images. Results were analyzed to assess the effect of each error on the estimation of GM CBF from ASL data.

Results

Geometric distortion had the largest effect on the 2D EPI data, whereas the 3D spiral was most affected by the resolution mismatch. The PVC method outperformed the GM-threshold even in the presence of combined errors from resolution mismatch and geometric distortions. The quantitative advantage of PVC was 16% without and 10% with the combined errors for both 2D and 3D ASL. Consistent with theoretical expectations, for error-free PV maps, the PVC method extracted the true GM CBF. In contrast, GM-weighted overestimated GM CBF by 5%, while GM-threshold underestimated it by 16%. The presence of PV map errors decreased the calculated GM CBF for all methods.

Conclusion

The quality of PV maps presents no argument for the preferential use of the GM-threshold method over PVC in the clinical application of ASL.
  相似文献   

5.
Objective

Amide proton transfer (APT) weighted chemical exchange saturation transfer (CEST) imaging is increasingly used to investigate high-grade, enhancing brain tumours. Non-enhancing glioma is currently less studied, but shows heterogeneous pathophysiology with subtypes having equally poor prognosis as enhancing glioma. Here, we investigate the use of CEST MRI to best differentiate non-enhancing glioma from healthy tissue and image tumour heterogeneity.

Materials & Methods

A 3D pulsed CEST sequence was applied at 3 Tesla with whole tumour coverage and 31 off-resonance frequencies (+6 to -6 ppm) in 18 patients with non-enhancing glioma. Magnetisation transfer ratio asymmetry (MTRasym) and Lorentzian difference (LD) maps at 3.5 ppm were compared for differentiation of tumour versus normal appearing white matter. Heterogeneity was mapped by calculating volume percentages of the tumour showing hyperintense APT-weighted signal.

Results

LDamide gave greater effect sizes than MTRasym to differentiate non-enhancing glioma from normal appearing white matter. On average, 17.9 % ± 13.3 % (min–max: 2.4 %–54.5 %) of the tumour volume showed hyperintense LDamide in non-enhancing glioma.

Conclusion

This works illustrates the need for whole tumour coverage to investigate heterogeneity in increased APT-weighted CEST signal in non-enhancing glioma. Future work should investigate whether targeting hyperintense LDamide regions for biopsies improves diagnosis of non-enhancing glioma.

  相似文献   

6.
Objective

To implement magnetic resonance fingerprinting (MRF) on a permanent magnet 50 mT low-field system deployable as a future point-of-care (POC) unit and explore the quality of the parameter maps.

Materials and methods

3D MRF was implemented on a custom-built Halbach array using a slab-selective spoiled steady-state free precession sequence with 3D Cartesian readout. Undersampled scans were acquired with different MRF flip angle patterns and reconstructed using matrix completion and matched to the simulated dictionary, taking excitation profile and coil ringing into account. MRF relaxation times were compared to that of inversion recovery (IR) and multi-echo spin echo (MESE) experiments in phantom and in vivo. Furthermore, B0 inhomogeneities were encoded in the MRF sequence using an alternating TE pattern, and the estimated map was used to correct for image distortions in the MRF images using a model-based reconstruction.

Results

Phantom relaxation times measured with an optimized MRF sequence for low field were in better agreement with reference techniques than for a standard MRF sequence. In vivo muscle relaxation times measured with MRF were longer than those obtained with an IR sequence (T1: 182 ± 21.5 vs 168 ± 9.89 ms) and with an MESE sequence (T2: 69.8 ± 19.7 vs 46.1 ± 9.65 ms). In vivo lipid MRF relaxation times were also longer compared with IR (T1: 165 ± 15.1 ms vs 127 ± 8.28 ms) and with MESE (T2: 160 ± 15.0 ms vs 124 ± 4.27 ms). Integrated ΔB0 estimation and correction resulted in parameter maps with reduced distortions.

Discussion

It is possible to measure volumetric relaxation times with MRF at 2.5 × 2.5 × 3.0 mm3 resolution in a 13 min scan time on a 50 mT permanent magnet system. The measured MRF relaxation times are longer compared to those measured with reference techniques, especially for T2. This discrepancy can potentially be addressed by hardware, reconstruction and sequence design, but long-term reproducibility needs to be further improved.

  相似文献   

7.
Objectives

To demonstrate the advantages of radial k-space trajectories over conventional Cartesian approaches for accelerating the acquisition of vessel-selective arterial spin labeling (ASL) dynamic angiograms, which are conventionally time consuming to acquire.

Materials and methods

Vessel-encoded pseudocontinuous ASL was combined with time-resolved balanced steady-state free precession (bSSFP) and spoiled gradient echo (SPGR) readouts to obtain dynamic vessel-selective angiograms arising from the four main brain-feeding arteries. Dynamic 2D protocols with acquisition times of one minute or less were achieved through radial undersampling or a Cartesian parallel imaging approach. For whole-brain dynamic 3D imaging, magnetic field inhomogeneity and the high acceleration factors required rule out the use of bSSFP and Cartesian trajectories, so the feasibility of acquiring 3D radial SPGR angiograms was tested.

Results

The improved SNR efficiency of bSSFP over SPGR was confirmed for 2D dynamic imaging. Radial trajectories had considerable advantages over a Cartesian approach, including a factor of two improvements in the measured SNR (p < 0.00001, N = 6), improved distal vessel delineation and the lack of a need for calibration data. The 3D radial approach produced good quality angiograms with negligible artifacts despite the high acceleration factor (R = 13).

Conclusion

Radial trajectories outperform conventional Cartesian techniques for accelerated vessel-selective ASL dynamic angiography.

  相似文献   

8.
Current studies emphasize the use of array coils to decrease noise and increase the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). We applied Tl-weighted and T2-weighted standard nonbreathhold spin echo (SE) sequences and Tl-weighted FLASH, TurboFLASH, T2-weighted spin-echo time (TSE), and heavily T2-weighted half Fourier acquisition single-shot TSE (HASTE) sequences during breathhold for abdominal imaging in 15 normal volunteers. The breathhold scans were performed using both a standard coil and a circular polarized array coil. We analyzed the signal intensity (SI), SNR, and CNR of abdominal organs in all sequences. SNRs increased in all cases by an overall factor of 3 due to an 8% increase in overall Sis and a 50% decrease in noise when applying the array coil. Although the array-coil FLASH sequence performed at least as well as the respective SE sequence, the SNRs of the array-coil TurboFLASH, TSE breathhold, and HASTE sequences were generally lower. We conclude that array-coil imaging significantly improves fast imaging of the abdomen.  相似文献   

9.

Objectives

To evaluate and compare conventional T1-weighted 2D turbo spin echo (TSE), T1-weighted 3D volumetric interpolated breath-hold examination (VIBE), and two-point 3D Dixon-VIBE sequences for automatic segmentation of visceral adipose tissue (VAT) volume at 3 Tesla by measuring and compensating for errors arising from intensity nonuniformity (INU) and partial volume effects (PVE).

Materials and methods

The body trunks of 28 volunteers with body mass index values ranging from 18 to 41.2 kg/m2 (30.02 ± 6.63 kg/m2) were scanned at 3 Tesla using three imaging techniques. Automatic methods were applied to reduce INU and PVE and to segment VAT. The automatically segmented VAT volumes obtained from all acquisitions were then statistically and objectively evaluated against the manually segmented (reference) VAT volumes.

Results

Comparing the reference volumes with the VAT volumes automatically segmented over the uncorrected images showed that INU led to an average relative volume difference of ?59.22 ± 11.59, 2.21 ± 47.04, and ?43.05 ± 5.01 % for the TSE, VIBE, and Dixon images, respectively, while PVE led to average differences of ?34.85 ± 19.85, ?15.13 ± 11.04, and ?33.79 ± 20.38 %. After signal correction, differences of ?2.72 ± 6.60, 34.02 ± 36.99, and ?2.23 ± 7.58 % were obtained between the reference and the automatically segmented volumes. A paired-sample two-tailed t test revealed no significant difference between the reference and automatically segmented VAT volumes of the corrected TSE (p = 0.614) and Dixon (p = 0.969) images, but showed a significant VAT overestimation using the corrected VIBE images.

Conclusion

Under similar imaging conditions and spatial resolution, automatically segmented VAT volumes obtained from the corrected TSE and Dixon images agreed with each other and with the reference volumes. These results demonstrate the efficacy of the signal correction methods and the similar accuracy of TSE and Dixon imaging for automatic volumetry of VAT at 3 Tesla.
  相似文献   

10.

Objectives

Contrast agent (CA) relaxivities are generally not well established in vivo, and the relationship between frequency/phase shift and magnetic susceptibility might be a useful alternative for CA quantification.

Materials and methods

Twenty volunteers (25–84 years old) were investigated using test–retest pre-bolus dynamic susceptibility-contrast (DSC) magnetic resonance imaging (MRI). The pre-bolus phase-based venous output function (VOF) time integral was used for arterial input function (AIF) rescaling. Resulting cerebral blood flow (CBF) data for grey matter (GM) were compared with pseudo-continuous arterial spin labelling (ASL). During the main bolus CA passage, the apparent spatial shift (pixel shift) of the superior sagittal sinus (seen in single-shot echo-planar imaging (EPI)) was converted to CA concentration and compared with conventional ΔR2*-based data and with a predicted phase-based VOF from the pre-bolus experiment.

Results

The phase-based pre-bolus VOF resulted in a reasonable inter-individual GM CBF variability (coefficient of variation 28 %). Comparison with ASL CBF values implied a tissue R2*-relaxivity of 32 mM?1 s?1. Pixel-shift data at low concentrations (data not available at peak concentrations) were in reasonable agreement with the predicted phase-based VOF.

Conclusion

Susceptibility-induced phase shifts and pixel shifts are potentially useful for large-vein CA quantification. Previous predictions of a higher R2*-relaxivity in tissue than in blood were supported.
  相似文献   

11.
Objective

To develop a 3D multi-contrast IVW protocol with 0.5-mm isotropic resolution and a scan time of 5 min per sequence.

Materials and methods

Pre-contrast T1w VISTA, DANTE prepared PDw VISTA, SNAP, and post-contrast T1w VISTA were accelerated using cartesian undersampling with target ordering method (CUSTOM) and self-supporting tailored k-space estimation for parallel imaging reconstruction (STEP). CUSTOM + STEP IVW was compared to full-sample IVW, SENSE-accelerated IVW, and CUSTOM + zero-filled Fourier reconstruction in normal volunteers and subjects with intracranial atherosclerotic disease (ICAD). Image quality, vessel delineation, CSF suppression, and blood suppression were compared.

Results

CUSTOM + STEP vessel wall delineation was comparable to full-sample IVW and better than SENSE IVW for vessel wall delineation on T1w VISTA and luminal contrast on SNAP. Average image quality and wall depiction were significantly improved using STEP reconstruction compared with zero-filled Fourier reconstruction, with no significant difference in CSF or blood suppression.

Conclusions

CUSTOM + STEP allowed multi-contrast 3D 0.5-mm isotropic IVW within 30 min. Although some quantitative and qualitative scores for CUSTOM − STEP were lower than fully sampled IVW, CUSTOM + STEP provided comparable vessel wall delineation as full-sample IVW and was superior to SENSE. CUSTOM + STEP IVW was well tolerated by patients and showed good delineation of ICAD plaque.

  相似文献   

12.
Objective

Evaluating the impact of the Inversion Time (TI) on regional perfusion estimation in a pediatric cohort using Arterial Spin Labeling (ASL).

Materials and methods

Pulsed ASL (PASL) was acquired at 3 T both at TI 1500 ms and 2020 ms from twelve MRI-negative patients (age range 9–17 years). A volume of interest (VOIs) and a voxel-wise approach were employed to evaluate subject-specific TI-dependent Cerebral Blood Flow (CBF) differences, and grey matter CBF Z-score differences. A visual evaluation was also performed.

Results

CBF was higher for TI 1500 ms in the proximal territories of the arteries (PTAs) (e.g. insular cortex and basal ganglia — P < 0.01 and P < 0.05 from the VOI analysis, respectively), and for TI 2020 ms in the distal territories of the arteries (DTAs), including the watershed areas (e.g. posterior parietal and occipital cortex — P < 0.001 and P < 0.01 from the VOI analysis, respectively). Similar differences were also evident when analyzing patient-specific CBF Z-scores and at a visual inspection.

Conclusions

TI influences ASL perfusion estimates with a region-dependent effect. The presence of intraluminal arterial signal in PTAs and the longer arterial transit time in the DTAs (including watershed areas) may account for the TI-dependent differences. Watershed areas exhibiting a lower perfusion signal at short TIs (~ 1500 ms) should not be misinterpreted as focal hypoperfused areas.

  相似文献   

13.

Objective

Zero echo time (ZTE) and ultrashort echo time (UTE) pulse sequences for MRI offer unique advantages of being able to detect signal from rapidly decaying short-T2 tissue components. In this paper, we applied 3D ZTE and UTE pulse sequences at 7T to assess differences between these methods.

Materials and methods

We matched the ZTE and UTE pulse sequences closely in terms of readout trajectories and image contrast. Our ZTE used the water- and fat-suppressed solid-state proton projection imaging method to fill the center of k-space. Images from healthy volunteers obtained at 7T were compared qualitatively, as well as with SNR and CNR measurements for various ultrashort, short, and long-T2 tissues.

Results

We measured nearly identical contrast-to-noise and signal-to-noise ratios (CNR/SNR) in similar scan times between the two approaches for ultrashort, short, and long-T2 components in the brain, knee and ankle. In our protocol, we observed gradient fidelity artifacts in UTE, and our chosen flip angle and readout also resulted in shading artifacts in ZTE due to inadvertent spatial selectivity. These can be corrected by advanced reconstruction methods or with different chosen protocol parameters.

Conclusion

The applied ZTE and UTE pulse sequences achieved similar contrast and SNR efficiency for volumetric imaging of ultrashort-T2 components. Key differences include that ZTE is limited to volumetric imaging, but has substantially reduced acoustic noise levels during the scan. Meanwhile, UTE has higher acoustic noise levels and greater sensitivity to gradient fidelity, but offers more flexibility in image contrast and volume selection.
  相似文献   

14.
Objective

Deconvolution is an ill-posed inverse problem that tends to yield non-physiological residue functions R(t) in dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI). In this study, the use of Bézier curves is proposed for obtaining physiologically reasonable residue functions in perfusion MRI.

Materials and methods

Cubic Bézier curves were employed, ensuring R(0) = 1, bounded-input, bounded-output stability and a non-negative monotonically decreasing solution, resulting in 5 parameters to be optimized. Bézier deconvolution (BzD), implemented in a Bayesian framework, was tested by simulation under realistic conditions, including effects of arterial delay and dispersion. BzD was also applied to DSC-MRI data from a healthy volunteer.

Results

Bézier deconvolution showed robustness to different underlying residue function shapes. Accurate perfusion estimates were observed, except for boxcar residue functions at low signal-to-noise ratio. BzD involving corrections for delay, dispersion, and delay with dispersion generally returned accurate results, except for some degree of cerebral blood flow (CBF) overestimation at low levels of each effect. Maps of mean transit time and delay were markedly different between BzD and block-circulant singular value decomposition (oSVD) deconvolution.

Discussion

A novel DSC-MRI deconvolution method based on Bézier curves was implemented and evaluated. BzD produced physiologically plausible impulse response, without spurious oscillations, with generally less CBF underestimation than oSVD.

  相似文献   

15.
Objective

Dysphagia or difficulty in swallowing is a potentially hazardous clinical problem that needs regular monitoring. Real-time 2D MRI of swallowing is a promising radiation-free alternative to the current clinical standard: videofluoroscopy. However, aspiration may be missed if it occurs outside this single imaged slice. We therefore aimed to image swallowing in 3D real time at 12 frames per second (fps).

Materials and methods

At 3 T, three 3D real-time MRI acquisition approaches were compared to the 2D acquisition: an aligned stack-of-stars (SOS), and a rotated SOS with a golden-angle increment and with a tiny golden-angle increment. The optimal 3D acquisition was determined by computer simulations and phantom scans. Subsequently, five healthy volunteers were scanned and swallowing parameters were measured.

Results

Although the rotated SOS approaches resulted in better image quality in simulations, in practice, the aligned SOS performed best due to the limited number of slices. The four swallowing phases could be distinguished in 3D real-time MRI, even though the spatial blurring was stronger than in 2D. The swallowing parameters were similar between 2 and 3D.

Conclusion

At a spatial resolution of 2-by-2-by-6 mm with seven slices, swallowing can be imaged in 3D real time at a frame rate of 12 fps.

  相似文献   

16.
Objectives

To assess the tumour dimensions in uveal melanoma patients using 7-T ocular MRI and compare these values with conventional ultrasound imaging to provide improved information for treatment options.

Materials and methods

Ten uveal melanoma patients were examined on a 7-T MRI system using a custom-built eye coil and dedicated 3D scan sequences to minimise eye-motion-induced image artefacts. The maximum tumour prominence was estimated from the three-dimensional images and compared with the standard clinical evaluation from 2D ultrasound images.

Results

The MRI protocols resulted in high-resolution motion-free images of the eye in which the tumour and surrounding tissues could clearly be discriminated. For eight of the ten patients the MR images showed a slightly different value of tumour prominence (average 1.0 mm difference) compared to the ultrasound measurements, which can be attributed to the oblique cuts through the tumour made by the ultrasound. For two of these patients the more accurate results from the MR images changed the treatment plan, with the smaller tumour dimensions making them eligible for eye-preserving therapy.

Conclusion

High-field ocular MRI can yield a more accurate measurement of the tumour dimensions than conventional ultrasound, which can result in significant changes in the prescribed treatment.

  相似文献   

17.
Objective

To refine a new technique to measure respiratory-resolved left ventricular end-diastolic volume (LVEDV) in mid-inspiration and mid-expiration using a respiratory self-gating technique and demonstrate clinical feasibility in patients.

Materials and methods

Ten consecutive patients were imaged at 1.5 T during 10 min of free breathing using a 3D golden-angle radial trajectory. Two respiratory self-gating signals were extracted and compared: from the k-space center of all acquired spokes, and from a superior–inferior projection spoke repeated every 64 ms. Data were binned into end-diastole and two respiratory phases of 15% respiratory cycle duration in mid-inspiration and mid-expiration. LVED volume and septal–lateral diameter were measured from manual segmentation of the endocardial border.

Results

Respiratory-induced variation in LVED size expressed as mid-inspiration relative to mid-expiration was, for volume, 1 ± 8% with k-space-based self-gating and 8 ± 2% with projection-based self-gating (P = 0.04), and for septal–lateral diameter, 2 ± 2% with k-space-based self-gating and 10 ± 1% with projection-based self-gating (P = 0.002).

Discussion

Measuring respiratory variation in LVED size was possible in clinical patients with projection-based respiratory self-gating, and the measured respiratory variation was consistent with previous studies on healthy volunteers. Projection-based self-gating detected a higher variation in LVED volume and diameter during respiration, compared to k-space-based self-gating.

  相似文献   

18.
Objective  To develop a continuous arterial spin labeling (CASL) perfusion imaging method for cerebral blood flow (CBF) measurement in rats with reduced spin-labeling length and optimized signal-to-noise ratio (SNR f ) per unit time. Materials and methods  In the proposed method, the longitudinal magnetization of brain tissue water in the imaging slice is prepared into a proper state before spin-labeling, and a post-tagging delay is employed after spin-labeling. The method was implemented on a 4.7 T small animal scanner. Numerical simulations and in vivo experiments were used to evaluate the performance of the method proposed. Results  With the proposed method, absolute CBF could be measured accurately from normal rat with a spin-labeling pulse as short as 400 ms, and yet employing the same formula as that used in the conventional CASL perfusion imaging method for calculation. The method also showed improved SNR f per unit time over the conventional CASL perfusion imaging method and the pulsed arterial spin labeling perfusion imaging method FAIR. Conclusion  Compared to the conventional CASL perfusion imaging method, the proposed method would be advantageous for CBF measurement in small animals having short vascular transit time in terms of SNR f per unit time and other benefits brought by shortened spin-labeling pulse.  相似文献   

19.

Objective

Quality assurance (QA) of magnetic resonance imaging (MRI) often relies on imaging phantoms with suitable structures and uniform regions. However, the connection between phantom measurements and actual clinical image quality is ambiguous. Thus, it is desirable to measure objective image quality directly from clinical images.

Materials and methods

In this work, four measurements suitable for clinical image QA were presented: image resolution, contrast-to-noise ratio, quality index and bias index. The methods were applied to a large cohort of clinical 3D FLAIR volumes over a test period of 9.5 months. The results were compared with phantom QA. Additionally, the effect of patient movement on the presented measures was studied.

Results

A connection between the presented clinical QA methods and scanner performance was observed: the values reacted to MRI equipment breakdowns that occurred during the study period. No apparent correlation with phantom QA results was found. The patient movement was found to have a significant effect on the resolution and contrast-to-noise ratio values.

Discussion

QA based on clinical images provides a direct method for following MRI scanner performance. The methods could be used to detect problems, and potentially reduce scanner downtime. Furthermore, with the presented methodologies comparisons could be made between different sequences and imaging settings. In the future, an online QA system could recognize insufficient image quality and suggest an immediate re-scan.
  相似文献   

20.
In this review article, techniques for sodium (23Na) magnetic resonance imaging (MRI) are presented. These techniques can also be used to image other nuclei with short relaxation times (e.g., 39K, 35Cl, 17O). Twisted projection imaging, density-adapted 3D projection reconstruction, and 3D cones are preferred because of uniform k-space sampling and ultra-short echo times. Sampling density weighted apodization can be applied if intrinsic filtering is desired. This approach leads to an increased signal-to-noise ratio compared to postfiltered acquisition in cases of short readout durations relative to T 2 * relaxation time. Different MR approaches for anisotropic resolution are presented, which are important for imaging of thin structures such as myocardium, cartilage, and skin. The third part of this review article describes different methods to put more weighting either on the intracellular or the extracellular sodium signal by means of contrast agents, relaxation-weighted imaging, or multiple-quantum filtering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号