共查询到17条相似文献,搜索用时 46 毫秒
1.
多传感器异步采样系统的顺序融合 总被引:2,自引:0,他引:2
针对现有基于伪量测的异步融合算法存在实时性差、融合时刻计算负荷大以及人为引入噪声相关等问题,提出了一种新的基于采样点顺序离散化思想的顺序式异步融合算法.该算法首先将各个传感器的测量值在融合中心的坐标系中和时钟下进行映射统一;然后,选取融合周期内各采样时刻对连续状态系统进行顺序离散化,从而获得本周期内各采样点间的状态方程和相应的测量方程.最终,使用线性最小均方误差意义下最优的线性卡尔曼滤波器实现本周期内异步采样量测的顺序滤波融合.仿真分析表明,该算法和基于伪量测的异步融合算法相比具有较少的计算量、较好的实时性和较高的估计融合精度. 相似文献
2.
研究带时间相关乘性噪声多传感器系统的分布式融合估计问题, 其中时间相关的乘性噪声满足一阶高斯−马尔科夫过程. 通过引入虚拟状态和虚拟过程噪声, 构建了虚拟状态的递推方程. 首先, 基于新息分析方法, 分别对系统状态和虚拟状态设计局部一步预报器. 然后, 基于一步预报器设计状态的局部线性滤波器、多步预报器和平滑器. 推导了任意两个局部状态估计误差之间的互协方差矩阵. 接着, 基于线性最小方差意义下的矩阵加权、对角矩阵加权和标量加权融合算法, 给出相应的分布式融合状态估值器. 最后, 分析算法的稳定性. 仿真研究验证了该算法的有效性. 相似文献
3.
葛文标;牛梦飞;吕跃祖;李中翔;房肖 《控制工程》2025,(4):595-601+613
针对一类噪声异步互相关的信息物理系统,研究了存在隐蔽攻击的情况下分布式安全融合估计问题。首先,考虑过程噪声与量测噪声的异步相关性,设计了一种依赖相关强度的类卡尔曼滤波局部估计器,并给出了确保估计器收敛的充分条件。其次,围绕一种线性隐蔽攻击模型,通过最大化局部估计均方误差得到了迭代最优攻击参数及相应的恶化局部估计。最后,基于矩阵加权策略融合局部估计,设计了一种分布式安全融合估计器,降低了隐蔽攻击对系统的影响,改善了融合估计性能。仿真结果验证了所设计的分布式安全融合估计器的有效性。 相似文献
4.
基于新息分析方法, 对带有色观测噪声的多重时滞系统, 提出了一种带白噪声估值器的非增广的最优滤波器. 它等价于一个带相关白噪声多重时滞系统的一步预报器. 当系统带有多个传感器时, 推导了多重时滞系统的任意两个传感器子系统之间的估计误差互协方差阵. 基于线性最小方差最优加权融合估计算法, 给出了分布式加权融合最优滤波器. 分布式融合估计比基于每个传感器的局部估计具有更高的精度. 比增广的集中式最优滤波器具有更好的可靠性, 且避免了高维计算和大存储空间. 仿真例子验证了其有效性. 相似文献
5.
6.
应用现代时间序列分析方法和白噪声估计理论,基于线性最小方差意义下按标量加权最优信息融合准则,对于带白色和有色观测噪声的多传感器单通道系统,提出了分布式融合白噪声反卷积滤波器.它由局部白噪声反卷积滤波器加权构成.可统一处理融合滤波、平滑和预报问题.给出了计算局部滤波误差互协方差公式,可用于计算最优加权.同单传感器情形相比,可提高融合滤波器精度.它可应用于石油地震勘探信号处理.一个3传感器信息融合Bernou lli-Gaussian白噪声反卷积滤波器的仿真例子说明了其有效性. 相似文献
7.
本文提出了乘性噪声和加性噪声相关下的量测随机延迟非线性系统分布式状态估计.在所考虑系统中,相关状态被多传感器簇构成的传感器网所观测.所得理想量测被传送到远程分布式处理网,并伴随服从一阶马尔可夫过程的随机延迟.在此基础上,本文提出了分布式高斯信息滤波(distributed Gaussian-information filter,DGIF),来实现估计精度与计算时间的折中.在单处理节点/单元中,以估计误差协方差最小化为准则,设计了相应的高斯递推滤波,并实现了延迟概率的在线递推估计.进一步地,在分布式处理网中,基于非线性量测方程的统计线性回归,结合一致性算法,给出了一种分布式信息滤波形式,有效实现了分布式融合.分别在单处理单元和分布式处理网中仿真验证了所提算法的有效性. 相似文献
8.
研究了多传感器采样系统在发生一类典型故障情况下的分布式融合估计问题;首先,针对局部传感器,利用Kalman滤波获得的新息进行故障检测;然后在最小方差意义下发展了传感器故障在线递归估计方案;进一步将所获得的估计结果对故障传感器的测量值进行重构,并应用射影定理建立了局部传感器容错更新算法;最后基于线性最小方差融合原则给出了多传感器采样系统的分布式容错估计方案;相比于已有融合估计方法,所提方案不仅能及时检测传感器故障,并且能进一步充分利用故障传感器信息来提高估计精度;数值仿真验证了方法的有效性和优越性。 相似文献
9.
10.
噪声相关的一步滞后无序量测递推融合算法 总被引:1,自引:0,他引:1
因传感器网络特殊的通信方式,以及传感器节点预处理量测的时间也各有不同,常会出现源于同一目标有序的测量数据却经网络传输后无序地到达融合中心的现象,即无序量测问题.加之,现有的相关融合算法大都是在各量测数据间噪声独立情况下建立的.为此,针对一个由多个子系统组成的传感器网络无序量测系统;其中假定每个子系统均是由两个分别与融合中心同步与异步且采样率相同的传感器组成;并在考虑各传感器测量噪声相关条件下,利用顺序加权融合技术,在融合中心建立一个能实现对目标状态实时估计且在线性最小均方误差意义下最优的递推加权融合算法.理论分析与计算机仿真表明,与现有方法相比,新算法在适用范围、实时处理能力、存储量和融合估计精度等方面均有显著的优势. 相似文献
11.
Honglei Lin 《International journal of systems science》2017,48(5):952-960
This paper is concerned with the distributed fusion estimation problem for a class of multi-sensor asynchronous sampling systems with correlated noises. The state updates uniformly and the sensors sample randomly. Based on the measurement augmentation method, the asynchronous sampling system is transformed to the synchronous sampling one. Local filter is designed by using an innovation analysis approach. Then, the filtering error cross-covariance matrix between any two local filters is derived. Finally, the optimal distributed fusion filter is proposed by using matrix-weighted fusion algorithm in the linear minimum variance sense. Simulation results show the effectiveness of the proposed algorithms. 相似文献
12.
13.
基于UKF 的变采样率多异质传感器异步数据融合 总被引:1,自引:0,他引:1
针对异质传感器数据融合能够实现信息互补,改善目标跟踪精度,提出了一种多异质传感器在变采样率下的异步量测融合算法,即首先将多传感器数据组合成类似于单传感器数据的异步数据处理方法,进行点迹合成,再将合成后的虚拟量测对当前时刻的目标状态进行更新.变采样率跟踪是基于网络或栅格多传感器异步融合跟踪的基础,通过引入时戳的概念给出了基于UKF(Unscented Kalman Filter)的具体融合算法,最后通过仿真验证了该算法的有效性。 相似文献
14.
在工业生产中造纸机状态监测的工程实际中,使用多个同类传感器进行在线测量可以得到更为准确的状态估计.在这类特殊的多传感器系统中,本文通过矩阵运算消除相关估计方差,得到了最优分布式融合估计算法.与多传感器传统分布式次优融合算法相比,该算法的优点在于适用于含有多于三个多传感器的系统.由于不需要存贮和计算中间变量,在计算量方面比最优融合算法具有较大优势.应用结果表明算法具有良好的估计性能. 相似文献
15.
统变结构多模型方法(VSMM)在处理高机动日标状态估计问题和大观测误差时存在因模型集合与真实模式匹配欠佳导致估计质量下降的问题.本文结合最小信息熵准则(ME)提出一种反馈式变结构多模型融合算法(MEVSMM),将在所有模型相关的在线估计信息进行反馈,进而选取状态估计分布信息熵最小的模型集作为当前有效模型集,计算多模型估计结果;结合粒子滤波算法(PF)和设计擂台赛算法(CM),构造了易于工程实现的次优算法(PF-MEVSMM).理论分析与仿真表明,与传统VSMM算法相比,本法具有模型集更精简、有效,融合估计结果鲁棒性更强、精度更高的优点. 相似文献
16.
17.
研究了带有未知通信干扰、观测丢失和乘性噪声不确定性的多传感器网络化系统的状态估计问题.通过白色乘性噪声描述系统状态和观测中的随机不确定性,采用一组服从Bernoulli分布的随机变量描述网络传输过程中存在的观测丢失现象,且数据传输中存在未知的网络通信干扰.当发生丢包时,以当前丢失观测的预报值进行补偿.对每个单传感器子系统,应用线性无偏最小方差估计准则设计了不依赖于未知通信干扰的最优线性滤波器.推导了任两个局部滤波误差之间的互协方差阵.进而,应用矩阵加权融合估计算法给出了分布式融合状态滤波器.仿真例子验证了算法的有效性. 相似文献