首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Objective

Zero echo time (ZTE) and ultrashort echo time (UTE) pulse sequences for MRI offer unique advantages of being able to detect signal from rapidly decaying short-T2 tissue components. In this paper, we applied 3D ZTE and UTE pulse sequences at 7T to assess differences between these methods.

Materials and methods

We matched the ZTE and UTE pulse sequences closely in terms of readout trajectories and image contrast. Our ZTE used the water- and fat-suppressed solid-state proton projection imaging method to fill the center of k-space. Images from healthy volunteers obtained at 7T were compared qualitatively, as well as with SNR and CNR measurements for various ultrashort, short, and long-T2 tissues.

Results

We measured nearly identical contrast-to-noise and signal-to-noise ratios (CNR/SNR) in similar scan times between the two approaches for ultrashort, short, and long-T2 components in the brain, knee and ankle. In our protocol, we observed gradient fidelity artifacts in UTE, and our chosen flip angle and readout also resulted in shading artifacts in ZTE due to inadvertent spatial selectivity. These can be corrected by advanced reconstruction methods or with different chosen protocol parameters.

Conclusion

The applied ZTE and UTE pulse sequences achieved similar contrast and SNR efficiency for volumetric imaging of ultrashort-T2 components. Key differences include that ZTE is limited to volumetric imaging, but has substantially reduced acoustic noise levels during the scan. Meanwhile, UTE has higher acoustic noise levels and greater sensitivity to gradient fidelity, but offers more flexibility in image contrast and volume selection.
  相似文献   

2.

Objective

Multi-component T2 relaxation allows for assessing the myelin water fraction in nervous tissue, providing a surrogate marker for demyelination. The assessment of the number and distribution of different T2 components for devising exact models of tissue relaxation has been limited by T2 sampling with conventional MR methods.

Materials and methods

A T2-prepared UTE sequence was used to assess multicomponent T2 relaxation at 9.4 T of fixed mouse and rat spinal cord samples and of mouse spinal cord in vivo. For in vivo scans, a cryogenically cooled probe allowed for 78-µm resolution in 1-mm slices. Voxel-wise non-negative least square analysis was used to assess the number of myelin water-associated T2 components.

Results

More than one myelin water-associated T2 component was detected in only 12 % of analyzed voxels in rat spinal cords and 6 % in mouse spinal cords, both in vivo and in vitro. However, myelin water-associated T2 values of individual voxels varied between 0.1 and 20 ms. While in fixed samples almost no components below 1 ms were identified, in vivo, these contributed 14 % of the T2 spectrum. No significant differences in MWF were observed in mouse spinal cord in vivo versus ex vivo measurements.

Conclusion

Voxel-wise analysis methods using relaxation models with one myelin water-associated T2 component are appropriate for assessing myelin content of nervous tissue.
  相似文献   

3.
Magnetic Resonance Materials in Physics, Biology and Medicine - Our goal is to design and validate a simple apparatus for the safety assessments of magnetically induced torques by four active...  相似文献   

4.
Magnetic Resonance Materials in Physics, Biology and Medicine - Diagnostic-quality neuroimaging methods are vital for widespread clinical adoption of low field MRI. Spiral imaging is an efficient...  相似文献   

5.
Magnetic Resonance Materials in Physics, Biology and Medicine - Given the growing interest in fluorine, it is necessary to develop new multi-tuned RF coils. Therefore, our objective is to design a...  相似文献   

6.
Magnetic Resonance Materials in Physics, Biology and Medicine - High resolution MRI of the intracranial vessel wall provides important insights in the assessment of intracranial vascular disease....  相似文献   

7.
Inadequate blood supply relative to metabolic demand, a haemodynamic condition termed as misery perfusion, often occurs in conjunction with acute ischaemic stroke. Misery perfusion results in adaptive changes in cerebral physiology including increased cerebral blood volume (CBV) and oxygen extraction ratio (OER) to secure substrate supply for the brain. It has been suggested that the presence of misery perfusion may be an indication of reversible ischaemia, thus detection of this condition may have clinical impact in acute stroke imaging. The ability of single spin echo T2 to detect misery perfusion in the rat brain at 1.5 T owing to its sensitivity to blood oxygenation level dependent (BOLD) contrast was studied both theoretically and experimentally. Based on the known physiology of misery perfusion, tissue morphometry and blood relaxation data, T2 behaviour in misery perfusion was simulated. The interpretation of these computations was experimentally assessed by quantifying T2 in a rat model for cerebral misery perfusion. CBF was quantified with the H2 clearance method. A drop of CBF from 58 ± 8 to 17 ± 3 ml/100 g min in the parieto-frontal cortex caused shortening of T2. from 66.9 ± 0.4 to 64.6 ± 0.5 ms. Under these conditions, no change in diffusion MRI was detected. In contrast, the cortex with CBF of 42 ± 7 ml/100 g min showed no change in T2. Computer simulations accurately predicted these T2, responses. The present study shows that the acute drop of CBF by 70% causes a negative BOLD that is readily detectable by T2 MRI at 1.5 T. Thus BOLD may serve as an index of misery perfusion thus revealing viable tissue with increased OER.  相似文献   

8.
Object

Lower-field MR is reemerging as a viable, potentially cost-effective alternative to high-field MR, thanks to advances in hardware, sequence design, and reconstruction over the past decades. Evaluation of lower field strengths, however, is limited by the availability of lower-field systems on the market and their considerable procurement costs. In this work, we demonstrate a low-cost, temporary alternative to purchasing a dedicated lower-field MR system.

Materials and Methods

By ramping down an existing clinical 3 T MRI system to 0.75 T, proton signals can be acquired using repurposed 13C transmit/receive hardware and the multi-nuclei spectrometer interface. We describe the ramp-down procedure and necessary software and hardware changes to the system.

Results

Apart from presenting system characterization results, we show in vivo examples of cardiac cine imaging, abdominal two- and three-point Dixon-type water/fat separation, water/fat-separated MR Fingerprinting, and point-resolved spectroscopy. In addition, the ramp-down approach allows unique comparisons of, e.g., gradient fidelity of the same MR system operated at different field strengths using the same receive chain, gradient coils, and amplifiers.

Discussion

Ramping down an existing MR system may be seen as a viable alternative for lower-field MR research in groups that already own multi-nuclei hardware and can also serve as a testing platform for custom-made multi-nuclei transmit/receive coils.

  相似文献   

9.
Objective

Amide proton transfer (APT) weighted chemical exchange saturation transfer (CEST) imaging is increasingly used to investigate high-grade, enhancing brain tumours. Non-enhancing glioma is currently less studied, but shows heterogeneous pathophysiology with subtypes having equally poor prognosis as enhancing glioma. Here, we investigate the use of CEST MRI to best differentiate non-enhancing glioma from healthy tissue and image tumour heterogeneity.

Materials & Methods

A 3D pulsed CEST sequence was applied at 3 Tesla with whole tumour coverage and 31 off-resonance frequencies (+6 to -6 ppm) in 18 patients with non-enhancing glioma. Magnetisation transfer ratio asymmetry (MTRasym) and Lorentzian difference (LD) maps at 3.5 ppm were compared for differentiation of tumour versus normal appearing white matter. Heterogeneity was mapped by calculating volume percentages of the tumour showing hyperintense APT-weighted signal.

Results

LDamide gave greater effect sizes than MTRasym to differentiate non-enhancing glioma from normal appearing white matter. On average, 17.9 % ± 13.3 % (min–max: 2.4 %–54.5 %) of the tumour volume showed hyperintense LDamide in non-enhancing glioma.

Conclusion

This works illustrates the need for whole tumour coverage to investigate heterogeneity in increased APT-weighted CEST signal in non-enhancing glioma. Future work should investigate whether targeting hyperintense LDamide regions for biopsies improves diagnosis of non-enhancing glioma.

  相似文献   

10.
Objective: The purpose of this study was to compare the signal-to-noise ratio (SNR) of phantom and rat brain images performed at 1.5 T on a clinical MR system and at 7 T on a small-animal experimental system. Comparison was carried out by taking into account SNR values based on a single sample acquisition at 1.5 and 7 T as well as on simultaneous imaging of multiple samples at 1.5 T. Methods: SNR was experimentally assessed on a phantom and rat brains at 1.5 and 7 T using 25 mm surface coils and compared to theoretical SNR gain estimations. The feasibility of multiple-animal imaging, using the hardware capabilities available on the 1.5 T system, was demonstrated. Finally, rat brain images obtained on a single animal at 7 T and on multiple animals acquired simultaneously at 1.5 T were compared. Results: Experimentally determined SNR at 7 T was far below theoretical estimations. Taking into account chemical shift, susceptibility artifacts and modifications of T1 and T2 relaxation times at higher field, a 7-T system holds limited advantage over a 1.5-T system. Instead, a multiple-animal acquisition methodology was demonstrated on a clinical 1.5-T scanner. This acquisition method significantly increases imaging efficiency and competes with single animal acquisitions at higher field. Conclusion: Multiple-animal imaging using a standard clinical scanner has a great potential as a high-throughput acquisition method for small animals.  相似文献   

11.
Objective

To measure healthy brain \({T}_{1}\) and \({T}_{2}\) relaxation times at 0.064 T.

Materials and methods

\({T}_{1}\) and \({T}_{2}\) relaxation times were measured in vivo for 10 healthy volunteers using a 0.064 T magnetic resonance imaging (MRI) system and for 10 test samples on both the MRI and a separate 0.064 T nuclear magnetic resonance (NMR) system. In vivo \({T}_{1}\) and \({T}_{2}\) values are reported for white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) for automatic segmentation regions and manual regions of interest (ROIs).

Results

\({T}_{1}\) sample measurements on the MRI system were within 10% of the NMR measurement for 9 samples, and one sample was within 11%. Eight \({T}_{2}\) sample MRI measurements were within 25% of the NMR measurement, and the two longest \({T}_{2}\) samples had more than 25% variation. Automatic segmentations generally resulted in larger \({T}_{1}\) and \({T}_{2}\) estimates than manual ROIs.

Discussion

\({T}_{1}\) and \({T}_{2}\) times for brain tissue were measured at 0.064 T. Test samples demonstrated accuracy in WM and GM ranges of values but underestimated long \({T}_{2}\) in the CSF range. This work contributes to measuring quantitative MRI properties of the human body at a range of field strengths.

  相似文献   

12.
13.
Magnetic Resonance Materials in Physics, Biology and Medicine - Speech production MRI benefits from lower magnetic fields due to reduced off-resonance effects at air-tissue interfaces and from the...  相似文献   

14.
Objective

To determine whether a multi-feed, loop-dipole combined approach can be used to improve performance of rectangular dielectric resonator antenna (DRA) arrays human brain for MRI at 7 T.

Materials and methods

Electromagnetic field simulations in a spherical phantom and human voxel model “Duke” were conducted for different rectangular DRA geometries and dielectric constants εr. Three types of RF feed were investigated: loop-only, dipole-only and loop-dipole. Additionally, multi-channel array configurations up to 24-channels were simulated.

Results

The loop-only coupling scheme provided the highest B1+ and SAR efficiency, while the loop-dipole showed the highest SNR in the center of a spherical phantom for both single- and multi-channel configurations. For Duke, 16-channel arrays outperformed an 8-channel bow-tie array with greater B1+ efficiency (1.48- to 1.54-fold), SAR efficiency (1.03- to 1.23-fold) and SNR (1.63- to 1.78). The multi-feed, loop-dipole combined approach enabled the number of channels increase to 24 with 3 channels per block.

Discussion

This work provides novel insights into the rectangular DRA design for high field MRI and shows that the loop-only feed should be used instead of the dipole-only in transmit mode to achieve the highest B1+ and SAR efficiency, while the loop-dipole should be the best suited in receive mode to obtain the highest SNR in spherical samples of similar size and electrical properties as the human head.

  相似文献   

15.
Objective

Dysphagia or difficulty in swallowing is a potentially hazardous clinical problem that needs regular monitoring. Real-time 2D MRI of swallowing is a promising radiation-free alternative to the current clinical standard: videofluoroscopy. However, aspiration may be missed if it occurs outside this single imaged slice. We therefore aimed to image swallowing in 3D real time at 12 frames per second (fps).

Materials and methods

At 3 T, three 3D real-time MRI acquisition approaches were compared to the 2D acquisition: an aligned stack-of-stars (SOS), and a rotated SOS with a golden-angle increment and with a tiny golden-angle increment. The optimal 3D acquisition was determined by computer simulations and phantom scans. Subsequently, five healthy volunteers were scanned and swallowing parameters were measured.

Results

Although the rotated SOS approaches resulted in better image quality in simulations, in practice, the aligned SOS performed best due to the limited number of slices. The four swallowing phases could be distinguished in 3D real-time MRI, even though the spatial blurring was stronger than in 2D. The swallowing parameters were similar between 2 and 3D.

Conclusion

At a spatial resolution of 2-by-2-by-6 mm with seven slices, swallowing can be imaged in 3D real time at a frame rate of 12 fps.

  相似文献   

16.
Objective The objective of this study was to assess the feasibility of using ultrashort TE (UTE) pulse sequences to image the lumbar spine.Materials Pulse sequences of TE=0.08 ms were used to image the lumbar spine in 5 normal subjects and 14 patients with degenerative disease. Contrast enhancement was administered in 11 cases.Results The sequences showed high signal in the anterior and posterior longitudinal ligaments, the cartilaginous end plate, the annulus fibrosus, the ligamentum flavum, interspinous ligaments and insertions of ligaments. Normal contrast enhancement was seen in these structures. Enhancement of hypertrophied ligaments and scar tissue was readily identified. Long T2 suppression techniques were useful in distinguishing enhancement of scar tissue from veins. Enhancement in discs was more obvious than with conventional sequences. In a case of thalassaemia bands of high signal were seen in the intervertebral discs parallel to the end plates.Conclusion The UTE sequences offer new options for visualizing discs, scar tissue, ligaments and other structures of the lumbar spine in health and disease.  相似文献   

17.

Object  

To assess lung perfusion in young patients with cystic fibrosis (CF) using an arterial spin labeling (ASL) technique.  相似文献   

18.
Journal of Computational Electronics - Enhancing the performance of Si field-effect transistors with ultrashort gate length is very challenging because of the increase of the source-to-drain...  相似文献   

19.
Objective

Wall shear stress (WSS) and its derived spatiotemporal parameters have proven to play a major role on intracranial aneurysms (IAs) growth and rupture. This study aims to demonstrate how ultra-high field (UHF) 7 T phase contrast magnetic resonance imaging (PC-MRI) coupled with advanced image acceleration techniques allows a highly resolved visualization of near-wall hemodynamic parameters patterns in in vitro IAs, paving the way for more robust risk assessment of their growth and rupture.

Materials and methods

We performed pulsatile flow measurements inside three in vitro models of patient-specific IAs using 7 T PC-MRI. To this end, we built an MRI-compatible test bench, which faithfully reproduced a typical physiological intracranial flow rate in the models.

Results

The ultra-high field 7 T images revealed WSS patterns with high spatiotemporal resolution. Interestingly, the high oscillatory shear index values were found in the core of low WSS vortical structures and in flow stream intersecting regions. In contrast, maxima of WSS occurred around the impinging jet sites.

Conclusions

We showed that the elevated signal-to-noise ratio arising from 7 T PC-MRI enabled to resolve high and low WSS patterns with a high degree of detail.

  相似文献   

20.
Wei  Shufeng  Wei  Zhao  Wang  Zheng  Wang  Huixian  He  Qingyuan  He  Hongyan  Li  Lei  Yang  Wenhui 《Magma (New York, N.Y.)》2023,36(3):409-418
Magnetic Resonance Materials in Physics, Biology and Medicine - To design a lightweight permanent magnet for a lowfield movable head imaging MRI system. To reduce the weight of the magnet, the pole...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号