首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simultaneous recordings of 135 pairs of units, located respectively in the superficial (I-IIo) and deep (V) laminae of the dorsal horn of the lumbar spinal cord of anaesthetized and paralysed animals, were performed both from normal (62 pairs) and from peripherally injured (chronically constricted sciatic nerve) rats (73 pairs). In each pair, one neuron was classified as nociceptive, responding only to noxious stimuli, and the other as a wide dynamic range neuron, responding to both non-noxious and noxious stimuli. To understand if some interaction was present between diverse neurons modulated by noxious inputs, we used cross-correlation techniques. The responses of simultaneously recorded pairs of units to suprathreshold (5 mA, 0.5 ms) electrical stimuli were used. A clearly delayed peak in the cross-correlograms of recordings from normal animals was present, indicating connectivity of superficial and deep-layer cells. This feature was not present in the cross-correlograms obtained from nerve-injured animals. Even if a specific pathway cannot be explicitly assigned to support these functional results, an overall connection between superficial and deep layers of the spinal cord is suggested. These connections are supposed to be either inactive or rearranged in the nerve-injured rats, thus suppressing a well timed coordinated connectivity. This anomaly could underlie a reduced degree of functional coherence in the modulation of nociceptive spinal inputs in cases of chronic pain.  相似文献   

2.
Substance P is released in the spinal cord in response to painful stimuli, but its role in nociceptive signaling remains unclear. When a conjugate of substance P and the ribosome-inactivating protein saporin was infused into the spinal cord, it was internalized and cytotoxic to lamina I spinal cord neurons that express the substance P receptor. This treatment left responses to mild noxious stimuli unchanged, but markedly attenuated responses to highly noxious stimuli and mechanical and thermal hyperalgesia. Thus, lamina I spinal cord neurons that express the substance P receptor play a pivotal role in the transmission of highly noxious stimuli and the maintenance of hyperalgesia.  相似文献   

3.
The number and distribution of Fos-like-immunoreactive neurons in different supraspinal brain areas induced by formalin injection into one hindpaw was estimated in rats with transected dorsal half of the spinal cord at the thoracic level in an attempt to avoid most of the descending modulatory actions. The results showed that: (i) after spinal lesion, the peripheral noxious inputs, going up mainly through the ventral spinal cord, elicited a more widespread and densely located Fos-like-immunoreactive neurons in subcortical areas, many of them showed no Fos expression when noxious stimulation was given in rats with intact spinal cord; (ii) at the same time, a small number of subcortical areas, such as the lateral ventroposterior thalamic nucleus and dorsal raphe nucleus, exhibited no significant increase of nociceptive Fos-like immunoreactive neurons after spinal lesion as compared to that with intact spinal cord; and (iii) there appeared a prominent expansion of cortical areas with densely located Fos-like-immunoreactive neurons in spinal-lesioned rats as compared with the limited labelled areas in the control group with intact spinal cord. These results indicate that: (i) in avoiding the spinally descending modulatory mechanisms, more widespread supraspinal and cortical neurons will be recruited and activated in response to the noxious stimulation; and (ii) the descending systems exert differential actions on the spinal targets which project nociceptive signals to different supraspinal regions. The implication of these facts is discussed.  相似文献   

4.
Substance P plays an important role in nociceptive processing in the spinal cord. Substance P is also present in several supraspinal regions, such as the pontine parabrachial nucleus, a major relay for autonomic regulation. In this study we examined in the cat with an immunogold method the presence of substance P-like immunoreactivity in spinoparabrachial terminals that were labelled by anterograde transport of unconjugated and lectin-conjugated horseradish peroxidase. We found that dense core vesicles in anterogradely labelled terminals were substance P-immunoreactive. Taken together with previous observations that noxious stimuli increase preprotachykinin expression in ascending nociceptive pathways from the spinal dorsal horn, the present finding provides evidence that substance P is involved in nociceptive processing also in the brain stem.  相似文献   

5.
Increases in the expression of immediate early genes have been shown to occur in the lumbar spinal cord dorsal horn after peripheral inflammation. Given that the pontine parabrachial nucleus has been implicated in nociceptive as well as antinociceptive processes and is reciprocally connected with the spinal cord dorsal horn, it seems likely that peripheral inflammation will cause alterations in immediate early gene expression in this nucleus. To test this hypothesis we examined cFos-like immunoreactivity in a rodent complete Freund's adjuvant-induced peripheral inflammatory model of persistent nociception. Unilateral hind paw injections of complete Freund's adjuvant produced inflammation, hyperalgesia of the affected limb, and alterations in open field behaviors. Immunocytochemical analysis demonstrated a bilateral increase in cFos-like immunoreactivity in the lateral and Kolliker-Fuse subdivisions of the parabrachial nucleus at 6 and 24 hours postinjection and an ipsilateral decrease below basal levels in the Kolliker-Fuse subdivision at 96 hours postinjection when compared to saline controls. Taken together, these results suggest that select parabrachial neurons are activated by noxious somatic inflammation. These active parabrachial neurons are likely to participate in ascending nociceptive and/or descending antinociceptive pathways.  相似文献   

6.
Carrageenan was used to study inflammation-induced changes in spinal nociception and its brain stem modulation in the pentobarbitone-anesthetized rat. Carrageenan was administered intraplantarly into one hindpaw 2 h before the start of electrophysiological single unit recordings of wide-dynamic range (WDR) neurons of the spinal dorsal horn. Carrageenan produced a significant leftward shift in the stimulus-response function for mechanical stimuli, whereas that for noxious heat stimuli was short of statistical significance. Conditioning electrical stimulation in the rostroventromedial medulla (RVM) significantly attenuated noxious heat-evoked, but not mechanically evoked, responses to spinal dorsal horn WDR neurons in the control (contralateral) side. However, in the carrageenan-treated side RVM stimulation had no significant effect on mechanically or noxious heat-evoked responses. Following direct spinal administration of neuropeptide FF (NPFF), noxious heat-evoked responses, but not mechanically evoked responses, were attenuated by RVM-stimulation also in the carrageenan-treated side. This selective NPFF-induced enhancement of brain stem-spinal inhibition was not reversed by naloxone. The results indicate that carrageenan-induced inflammation significantly changes the response properties of spinal nociceptive neurons and their brain stem-spinal modulation. During inflammation, NPFF in the spinal cord produces a submodality-selective potentiation of the antinociceptive effect induced by brain stem-spinal pathways, independent of naloxone-sensitive opioid receptors.  相似文献   

7.
Experiments in both conscious and anesthetized animals indicate that intrathecal (i.t.) strychnine (STR; glycine receptor antagonist) produces acute, reversible allodynia, as evidenced by inappropriate behavioral and autonomic responses to cutaneous tactile stimuli. Although STR is known to produce disinhibition of afferent input to the spinal cord, changes in spinal reflexes cannot fully explain the complex behaviors observed following i.t. STR. Which supraspinal sites are involved in STR-dependent allodynia and how this abnormal somatosensory message is relayed to these sites remain to be determined. The medial thalamus contains many nociceptive-specific (NS) neurons and is believed to be involved in mediating the affective-motivational aspects of pain. It is thus important to determine whether spinally administered STR elicits changes in the responses of medial thalamic NS neurons. Extracellular single-unit recordings were conducted in urethan-anesthetized rats (290-490 g). A detailed characterization of 20 thalamic NS units (1 per rat; 2 in 1 case) was conducted before and immediately after i.t. STR (40 microg). Initially, all of the units in this study were classified as NS, because they were excited by noxious pinch but not by innocuous tactile stimuli. After i.t. STR, all (formerly NS) units exhibited significant responses to innocuous tactile stimuli (brush and/or air jet) applied to lumbar or sacral dermatomes. This effect of STR on thalamic NS neurons was acute and reversible. The majority of units (11 of 20) also exhibited an increase in spontaneous firing rate. Although the complete pinch receptive field (RF) could not be determined for all units, the available data indicate that the RFs for brush stimulation after i.t. STR were substantially different from the pre-STR pinch RFs for all but three units. The same i.t. STR injection that caused the observed changes in medial thalamus also produced allodynia, in the form of brush-evoked cardiovascular or motor responses, in 18 of the 19 rats. The ability of NS cells in medial thalamus to respond to tactile input after i.t. STR suggests that the STR lowers the threshold of nociceptive neurons that project directly and/or indirectly to medial thalamus. These observations suggest that ascending nociceptive pathways and medial thalamic structures contribute to the expression of STR-dependent allodynia.  相似文献   

8.
Much progress has been made the understanding of endogenous pain-controlling systems. Recently, new concepts and ideas which are derived from neurobiology, chaos research and from research on learning and memory have been introduced into pain research and shed further light on the organization and function of endogenous antinociception. These most recent developments will be reviewed here. Three principles of endogenous antinociception have been identified, as follows. (1) Supraspinal descending inhibition: the patterns of neuronal activity in diencephalon, brainstem and spinal cord during antinociceptive stimulation in midbrain periaqueductal gray (PAG) or medullary nucleus raphe magnus have now been mapped on the cellular level, using the c-Fos technique. Results demonstrate that characteristic activity patterns result within and outside the PAG when stimulating at its various subdivisions. The descending systems may not only depress mean discharge rates of nociceptive spinal dorsal horn neurons, but also may modify harmonic oscillations and nonlinear dynamics (dimensionality) of discharges. (2) Propriospinal, heterosegmental inhibition: antinociceptive, heterosegmental interneurons exist which may be activated by noxious stimulation or by supraspinal descending pathways. (3) Segmental spinal inhibition: a robust long-term depression of primary afferent neurotransmission in A delta fibers has been identified in superficial spinal dorsal horn which may underlie long-lasting antinociception by afferent stimulation, e.g. by physical therapy or acupuncture.  相似文献   

9.
Studies have shown that noxious cutaneous stimulation engages physiologically different antinociceptive systems to inhibit a spinal reflex, tail withdrawal from radiant heat. Two experiments are reported that examine the relationship between the inhibition of the tail-flick response and brain-mediated responses to nociception. The induction of a spinally mediated antinociception was accompanied by an increase in latency to vocalize to a noxious thermal stimulus, suggesting pain inhibition. Physiological manipulations that eliminated the inhibition of the tail-flick reflex restored vocalization to thermal stimulation and revealed a concurrent sensitization that generally heightened behavioral reactivity. The results suggest that net pain is regulated by 2 opposing processes, a selective inhibition of nociceptive signals within the spinal cord and a general sensitization that heightens stimulus processing. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

10.
In the rat, applying noxious heat stimuli to the excitatory receptive fields and simultaneously to adjacent, much larger, areas of the body results in a surface-related reduction in the responses of lumbar dorsal horn convergent neurons. These inhibitory effects induced by spatial summation of nociceptive inputs have been shown to involve a supraspinally mediated negative feedback loop. The aim of the present study was to determine the anatomic level of integration of these controls and hence to ascertain what relationships they might share with other descending controls modulating the transmission of nociceptive signals. The responses of lumbar convergent neurons to noxious stimulation (15-s immersion in a 48 degrees C water bath) applied to increasing areas of the ipsilateral hindlimb were examined in several anesthetized preparations: sham-operated rats, rats with acute transections performed at various levels of the brain stem, and spinal rats. The effects of heterotopic noxious heat stimulation (tail immersion in a 52 degrees C water bath) on the C-fiber responses of these neurons also were analyzed. The electrophysiological properties of dorsal horn convergent neurons, including their responses to increasing stimulus surface areas, were not different in sham-operated animals and in animals the brain stems of which had been transected completely rostral to a plane -2. 8 mm remote from interaural line (200 micron caudal to the caudal end of the rostral ventromedial medulla). In these animals, increasing the stimulated area size from 4.8 to 18 cm2 resulted in a 35-45% reduction in the responses. In contrast, relative to responses elicited by 4.8 cm2 stimuli, responses to 18 cm2 were unchanged or even increased in animals with transections at more caudal level and in spinal animals. Inhibitions of the C-fiber responses elicited by heterotopic noxious heat stimulation were in the 70-80% range during conditioning in sham-operated animals and in animals with rostral brain stem transections. Such effects were reduced significantly (residual inhibitions in the 10-20% range) in animals with transections >500 micron caudal to the caudal end of the rostral ventromedial medulla and in spinal animals. It is concluded that the caudal medulla constitutes a key region for the expression of negative feed-back mechanisms triggered by both spatial summation of noxious inputs and heterotopic noxious inputs.  相似文献   

11.
Long-lasting facilitations of spinal nociceptive reflexes resulting from temporal summation of nociceptive inputs have been described on many occasions in spinal, nonanesthetized rats. Because noxious inputs also trigger powerful descending inhibitory controls, we investigated this phenomenon in intact, halothane-anesthetized rats and compared our results with those obtained in other preparations. The effects of temporal summation of nociceptive inputs were found to be very much dependent on the type of preparation. Electromyographic responses elicited by single square-wave electrical shocks (2 ms, 0.16 Hz) applied within the territory of the sural nerve were recorded in the rat from the ipsilateral biceps femoris. The excitability of the C-fiber reflex recorded at 1.5 times the threshold (T) was tested after 20 s of electrical conditioning stimuli (2 ms, 1 Hz) within the sural nerve territory. During the conditioning procedure, the C-fiber reflex was facilitated (wind-up) in a stimulus-dependent fashion in intact, anesthetized animals during the application of the first seven conditioning stimuli; thereafter, the magnitude of the responses reached a plateau and then decreased. Such a wind-up phenomenon was seen only when the frequency of stimulation was 0.5 Hz or higher. In spinal, unanesthetized rats, the wind-up phenomenon occurred as a monotonic accelerating function that was obvious during the whole conditioning period. An intermediate picture was observed in the nonanesthetized rat whose brain was transected at the level of the obex, but the effects of conditioning were profoundly attenuated when such a preparation was anesthetized. In intact, anesthetized animals the reflex was inhibited in a stimulus-dependent manner during the postconditioning period. These effects were not dependent on the frequency of the conditioning stimulus. Such inhibitions were blocked completely by transection at the level of the obex, and in nonanesthetized rats were then replaced by a facilitation. A similar long-lasting facilitation was seen in nonanesthetized, spinal rats. It is concluded that, in intact rats, an inhibitory mechanism counteracts the long-lasting increase of excitability of the flexor reflex seen in spinal animals after high-intensity, repetitive stimulation of C-fibers. It is suggested that supraspinally mediated inhibitions also participate in long term changes in spinal cord excitability after noxious stimulation.  相似文献   

12.
We characterized the neuronal properties of the anterior cingulate cortex (ACC) evoked by electrical stimulation of the medial thalamus (MT). MT stimulation sites were found by their neuronal responses to noxious stimuli. Of 487 units identified histologically in the rat ACC, 94% were activated trans-synaptically at different areas of the ACC. Six percent of MT-evoked ACC units were activated antidromically and all of these units projected to a specific nucleus of MT. We suggest that MT nuclei mediate different aspects of nociceptive information to specific ACC areas, and that nociceptive information in the MT is modulated reciprocally by activities from the ACC.  相似文献   

13.
Antinociception produced by microinjection of morphine in the ventrolateral periaqueductal gray is mediated in part by alpha2-adrenoceptors in the spinal cord dorsal horn. However, several recent reports demonstrate that microinjection of morphine in the ventrolateral periaqueductal gray inhibits nociceptive responses to noxious heating of the tail by activating descending neuronal systems that are different from those that inhibit the nociceptive responses to noxious heating of the feet. More specifically, alpha2-adrenoceptors appear to mediate the antinociception produced by morphine using the tail-flick test, but not that using the foot-withdrawal or hot-plate tests. The present study extended these findings and determined the role of alpha1-adrenoceptors in mediating the antinociceptive effects of morphine microinjected into the ventrolateral periaqueductal gray using both the foot-withdrawal and the tail-flick responses to noxious radiant heating in lightly anesthetized rats. Intrathecal injection of selective antagonists was used to determine whether the antinociceptive effects of morphine were modulated by alpha1-adrenoceptors. Injection of the selective alpha1-adrenoceptor antagonists prazosin or WB4101 potentiated the increase in the foot-withdrawal response latency produced by microinjection of morphine in the ventrolateral periaqueductal gray. In contrast, either prazosin or WB4101 partially reversed the increase in the tail-flick response latency produced by morphine. These results indicate that microinjection of morphine in the ventrolateral periaqueductal gray modulates nociceptive responses to noxious heating of the feet by activating descending neuronal systems that are different from those that inhibit the nociceptive responses to noxious heating of the tail. More specifically, alpha1-adrenoceptors mediate a pro-nociceptive action of morphine using the foot-withdrawal response, but in contrast, alpha1-adrenoceptors appear to mediate part of the antinociceptive effect of morphine determined using the tail-flick test.  相似文献   

14.
To study the density of nicotinic acetylcholine receptors on primary afferents and central nociceptive pathways, [3H](-)-nicotine binding was conducted in the cerebral cortex and spinal cord including dorsal roots and ganglia (DRG), of control rats and rats desensitized by neonatal capsaicin treatment. [3H](-)-nicotine binding in capsaicin-treated rats was reduced in cerebral cortex by 35% and spinal cord+DRG by 46% (p < 0.05). Functionally, both iontophoretically applied acetylcholine- and capsaicin-evoked flares (measured by laser Doppler flowmetry) were reduced in capsaicin-treated animals (p < 0.05); similarly, electrical stimulation-evoked flares were significantly lower in the same group, compared with controls (p < 0.05). These data provide direct evidence that many neuronal nicotinic acetylcholine receptors are associated with capsaicin-sensitive peptidergic neurones, including primary afferents, DRG and central nociceptive pathways.  相似文献   

15.
Primary afferent neurons containing substance P (SP) are apparently implicated in the transmission of noxious information from the periphery to the central nervous system, and SP released from primary afferent neurons acts on second-order neurons with the SP receptor (SPR). In the rat, nociceptive information reached the hypothalamus not only through indirect pathways but also directly through trigeminohypothalamic and spinohypothalamic pathways. Thus, in the present study, the distribution pattern of trigeminohypothalamic and spinohypothalamic tract neurons showing SPR-like immunoreactivity (SPR-LI) was examined in the rat by a retrograde tract-tracing method combined with immunofluorescence histochemistry for SPR. A substantial number of trigeminal and spinal neurons with SPR-LI were retrogradely labeled with Fluoro-Gold (FG) injected into the hypothalamic regions. These neurons were distributed mainly in lamina I of the medullary and spinal dorsal horns, lateral spinal nucleus, regions around the central canal of the spinal cord, and the lateral aspect of the deep part of the spinal dorsal horn. A number of SPR-LI neurons in the spinal parasympathetic nucleus were labeled with FG injected into the area around the paraventricular hypothalamic nucleus. Some SPR-LI neurons in the lateral spinal nucleus and the lateral aspect of the deep part of the spinal dorsal horn were also labeled with FG injected into the septal region. On the basis of the distribution areas of SPR-LI trigeminal and spinal neurons projecting to the hypothalamic and septal regions, it is likely that these neurons are involved in the transmission of somatic and/or visceral noxious information.  相似文献   

16.
In vivo electrophysiological assays in anesthetized rats have been used to compare the effects of the 5HT1B/1D receptor agonist, naratriptan, on central trigeminal nociceptive processing from dural and cutaneous inputs with its effects on nociceptive processing in the spinal cord. Naratriptan inhibited responses of single trigeminal neurons, to noxious electrical and mechanical stimulation of the dura and face, dose dependently by a maximum of 67+/-3% and 70+/-18%, respectively, at 3 mg kg(-1) i.v. In contrast, naratriptan did not affect spinal dorsal horn neuronal responses to noxious mechanical stimulation of the hind-paw. These findings suggest that 5HT1B/1D receptors have differential effects on nociceptive processing in the trigeminal versus spinal dorsal horns and provide a potential explanation for the lack of general analgesic effects of brain penetrant 5HT(1B/1D) agonist antimigraine drugs.  相似文献   

17.
We have determined if peripheral nerve stimulation altered the increased spontaneous release of immunoreactive (ir)-galanin that is found in the superficial dorsal horn of the spinal cord of neuropathic rats. Using the antibody microprobe technique to study the localized sites of ir-galanin release in vivo, we found that high intensity electrical stimulation of the injured nerve resulted in a further increase in ir-galanin release in the superficial dorsal horn, with no significant persistence of ir-galanin after release. Release of ir-galanin at stimulus strengths sufficient to activate C fibres, in an area of the spinal cord thought to be concerned with nociceptive transmission, indicates a possible role for this peptide in the spinal modulation of pain after peripheral nerve injury.  相似文献   

18.
In this study, we investigated the interaction of propofol (a compound used widely as an intravenous anesthetic) with gamma-aminobutyric acid(A) (GABA(A)) and delta opioid receptors at the level of the spinal cord. Nociceptive thresholds were measured in rats through the use of electrical current testing (ECT) and tail-flick latency. Full recovery from sedation occurred 36.3 +/- 1.7 min (mean +/- S.E.M.; n = 20) after 40 mg/kg propofol i.p. Forty minutes after administration, there was residual antinociception when assessed by ECT but not when assessed by noxious heat. The ECT antinociceptive effects of propofol at tail but not neck sites were suppressed by intrathecal injection of the GABA(A) antagonists bicuculline and SR-95531 and the delta opioid antagonist naltrindole. These results suggest that there is an interaction between propofol and antagonists at receptors in the caudal segments of the spinal cord responsible for tail innervation. Antagonist dose-response curves were compared with those for suppression of intrathecal midazolam-induced antinociception. All intrathecal antagonists reversed the antinociceptive effect of propofol with the same dose-response curves as those previously obtained for suppression of the effect of intrathecal midazolam. We conclude that propofol, when given intraperitoneally, produces antinociception in rats through an interaction with spinal GABA(A) receptors. This combination leads to activation of a spinal cord system involving a delta opioid receptor; the same mechanisms involved with midazolam-induced spinal antinociception.  相似文献   

19.
Behavioral and electrophysiological studies have shown that a noxious stimulus applied to one part of the body can reduce the response to a subsequent noxious stimulus elsewhere on the body. This phenomenon is referred to as diffuse noxious inhibitory controls (DNIC). In the present study we used immunocytochemical labeling for the Fos protein product of the c-fos proto-oncogene to determine the location of lumbar spinal nociresponsive neurons that are inhibited by a spatially remote noxious stimulus. Repetitive hindpaw pinch evoked pronounced Fos-like immunoreactivity in the superficial and deep laminae of the lumbar spinal cord. Placing the tail in 50 degrees C water before each hindpaw pinch significantly reduced Fos-like immunoreactivity in these regions. These data demonstrate that nociresponsive neurons in both the superficial and deep laminae of the spinal cord are sensitive to inhibition by a spatially remote noxious conditioning stimulus.  相似文献   

20.
Prolonged tissue damage or injury often leads to chronic pain states such that noxious stimuli evoke hyperalgesia and innocuous tactile stimuli evoke pain (allodynia). The neuropeptide nociceptin, also known as orphanin FQ, is an endogenous ligand for the orphan opioid-like receptor which induces both hyperalgesia and allodynia when administered by injection through the theca of the spinal cord into the subarachnoid space (that is, intrathecally). Here we show that the nociceptin precursor contains another biologically active peptide which we call nocistatin. Nocistatin blocks nociceptin-induced allodynia and hyperalgesia, and attenuates pain evoked by prostaglandin E2. It is the carboxy-terminal hexapeptide of nocistatin (Glu-Gln-Lys-Gln-Leu-Gln), which is conserved in bovine, human and murine species, that possesses allodynia-blocking activity. We have also isolated endogenous nocistatin from bovine brain. Furthermore, intrathecal pretreatment with anti-nocistatin antibody decreases the threshold for nociceptin-induced allodynia. Although nocistatin does not bind to the nociceptin receptor, it binds to the membrane of mouse brain and of spinal cord with high affinity. Our results show that nocistatin is a new biologically active peptide produced from the same precursor as nociceptin and indicate that these two peptides may play opposite roles in pain transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号