首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Refractive indexes for the Al2O3-Na2O-SiO2 system have been measured using an ellipsometer for a wavelength of 632.8 nm over a wide temperature range (1100 to 1800 K). Two kinds of sample were used: xAl2O3-(40-x)Na2O-60SiO2 and yAl2O3-yNa2O-(100-2y)SiO2, where x ranged between 6 and 20 mol pct and y between 12.5 and 25 mol pct. In the former samples, the temperature coefficient of refractive indexes changed from negative to positive on increasing the concentration of Al2O3. In the latter samples, the refractive indexes increased monotonically with decreasing concentration of SiO2, and the temperature coefficient was always positive. It has been found that the temperature dependence of refractive indexes in these melts is determined by the coefficient of thermal expansion, which would be relevant to the degree of polymerization of the melts. In addition, the electronic polarizability of oxygen derived from the refractive indexes increased with increasing temperature in each melt. This suggests that the basicity of the alumino-silicate melts increases as temperature increases. The positive temperature coefficient of the electronic polarizability of oxygen can be attributed to an increase in the distance between cation and oxygen ion due to thermal expansion. The dependence of the electronic polarizability of oxygen on the concentration of Al2O3 has also been discussed in terms of the electronic polarizabilities of three types of oxygen contained in the melts. This article is based on a presentation given in the Mills Symposium entitled “Metals, Slags, Glasses: High Temperature Properties & Phenomena,” which took place at The Institute of Materials in London, England, on August 22–23, 2002.  相似文献   

2.
The crystallization behavior and microstructure of silica-free 5K2O-45CaO-50P2O5 (KCP) bioglass have been studied using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning election microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). The activation energy for the KCP bioglass crystallization is found to be 337.4 kJ/mol using a nonisothermal method. The crystalline phases of the glass surface determined by XRD are KCa(PO3)3, 4CaO·3P2O5, and β-Ca(PO3)2 when the KCP bioglass is crystallized at 903 K for 4 hours. The crystalline phase of the powder samples determined by XRD is β-Ca(PO3)2 when silica-free KCP glasses crystallized at 873 to 1073 K for 8 hours. Crystallization starts at the surface of the KCP bioglass and then proceeds toward the interior of the glass matrix. The morphology of β-Ca(PO3)2 is a fibrillar shape 20 to 180 nm in length and 17 to 20 nm in diameter, with an aspect ratio ranging from 1.0 to 10.6.  相似文献   

3.
Recently, (Fe-Co)-B-Si-Nb bulk metallic glasses (BMGs) were produced. Such BMGs exhibit high glass-forming ability (GFA) as well as good mechanical and magnetic properties. These alloys combine the advantages of functional and structural materials. The soft magnetic properties can be enhanced by nanocrystallization. To force the nanocrystallization, small content of Cu was added to the starting composition. In this article, {[(Fe0.5Co0.5)0.75Si0.05B0.20]0.96Nb0.04}100–x Cu x glassy alloys (x = 1, 2, and 3) were chosen for investigation. The GFA and the thermal stability of these alloys were evaluated. The effects of crystallization during heat-treatment processes on the phase evolution and the magnetic properties, including M s , H c , and T c , in these alloys were investigated. The phase analyses were done with the help of the X-ray diffraction patterns recorded in situ by using the synchrotron radiation in transmission configuration.  相似文献   

4.
Zinc ferrite and strontium hexaferrite; SrFe12O19/ZnFe2O4 (SrFe11.6Zn0.4O19) nanoparticles having super paramagnetic nature were synthesized by simultaneous co-precipitation of iron, zinc and strontium chloride salts using 5 M sodium hydroxide solution. The resulting precursors were heat treated (HT) at 850, 950 and 1150°C for 4 h in nitrogen atmosphere. The hysteresis loops showed an increase in saturation magnetization from 1.040 to 58.938 emu/g with increasing HT temperatures. The ‘as-synthesized’ particles have size in the range of 20–25 nm with spherical and needle shapes. Further, these spherical and needle shaped nanoparticles tend to change their morphology to hexagonal plate shape with increase in HT temperatures. The effect of such a systematic morphological transformation of nanoparticles on dielectric (complex permittivity and permeability) and microwave absorption properties were estimated in X band (8.2–12.2 GHz). The maximum reflection loss of the composite reaches −26.51 dB (more than 99% power attenuation) at 10.636 GHz which suits its application in RADAR absorbing materials.  相似文献   

5.
The activities of MnO and MnS in a MnO-SiO2-Al2O3(or AlO1.5)-MnS liquid oxysulfide solution were investigated by employing the gas/liquid/Pt-Mn alloy chemical equilibration technique under a controlled atmosphere at 1773 K (1500 °C). Also, the sulfide capacity, defined as C S = (wt pct S)(pO2/pS2)1/2, in MnO-SiO2-Al2O3 slag with a dilute MnS concentration was obtained from the measured experimental data. As X SiO2/(X MnO + X SiO2) in liquid oxysulfide increases, the activity coefficient of MnO decreases, while that of MnS first increases and then decreases. As X(AlO1.5) in liquid oxysulfide increases, the activity coefficient of MnS increases, while no remarkable change is observed for the activity coefficient of MnO. The behavior of the activity coefficient of MnS was qualitatively analyzed by considering MnO + A x S y (SiS2 or Al2S3) = MnS + A x O y (SiO2 or Al2O3) reciprocal exchange reactions in the oxysulfide solution. The behavior was shown to be consistent with phase diagram data, namely, the MnS saturation boundary. Quantitative analysis of the activity coefficient of the oxysulfide solution was also carried out by employing the modified quasichemical model in the quadruplet approximation.  相似文献   

6.
The electrical conductivity of NaF-AlF3-Al2O3 melts with a CaF2 concentration of 5 wt % is measured at a continuously varying cell constant when the molar cryolitic ratio CR = [NaF]/[AlF3] changes from 1.2 to 2.0 [1, 2]. The experimental data are used to obtain a regression equation to describe the dependence of the electrical conductivity of the melts under study on CR, the alumina content, and temperature {χ] = f(CR, [Al2O3], T)}.  相似文献   

7.
Density measurements of a low-silica CaO-SiO2-Al2O3 system were carried out using the Archimedes principle. A Pt 30 pct Rh bob and wire arrangement was used for this purpose. The results obtained were in good agreement with those obtained from the model developed in the current group as well as with other results reported earlier. The density for the CaO-SiO2 and the CaO-Al2O3 binary slag systems also was estimated from the ternary values. The extrapolation of density values for high-silica systems also showed good agreement with previous works. An estimation for the density value of CaO was made from the current experimental data. The density decrease at high temperatures was interpreted based on the silicate structure. As the mole percent of SiO2 was below the 33 pct required for the orthosilicate composition, discrete \textSiO44 - {\text{SiO}}_{4}^{4 - } tetrahedral units in the silicate melt would exist along with O2– ions. The change in melt expansivity may be attributed to the ionic expansions in the order of
\textAl 3+ - \textO 2- < \textCa 2+ - \textO 2- < \textCa 2+ - \textO - {\text{Al}}^{ 3+ } - {\text{O}}^{ 2- } < {\text{Ca}}^{ 2+ } - {\text{O}}^{ 2- } < {\text{Ca}}^{ 2+ } - {\text{O}}^{ - }  相似文献   

8.
9.
The chemical diffusion coefficient of sulfur in the ternary slag of composition 51.5 pct CaO-9.6 pct SiO2-38.9 pct Al2O3 slag was measured at 1680 K, 1700 K, and 1723 K (1403 °C, 1427 °C, and 1450 °C) using the experimental method proposed earlier by the authors. The P\textS2 P_{{{\text{S}}_{2} }} and P\textO2 P_{{{\text{O}}_{2} }} pressures were calculated from the Gibbs energy of the equilibrium reaction between CaO in the slag and solid CaS. The density of the slag was obtained from earlier experiments. Initially, the order of magnitude for the diffusion coefficient was taken from the works of Saito and Kawai but later was modified so that the concentration curve for sulfur obtained from the program was in good fit with the experimental results. The diffusion coefficient of sulfur in 51.5 pct CaO-9.6 pct SiO2-38.9 pct Al2O3 slag was estimated to be in the range 3.98 to 4.14 × 10−6 cm2/s for the temperature range 1680 K to 1723 K (1403 °C to 1450 °C), which is in good agreement with the results available in literature  相似文献   

10.
The oxidation behavior of both Pd43Cu27Ni10P20 bulk metallic glass (Pd4-BMG) and its amorphous foam containing 45 pct porosity (Pd4-AF) was investigated over the temperature range of 343 K (70 °C) to 623 K (350 °C) in dry air. The results showed that virtually no oxidation occurred in the Pd4-BMG at T < 523 K (250 °C), revealing the alloy’s favorable oxidation resistance in this temperature range. In addition, the oxidation kinetics at T ≥ 523 K (250 °C) followed a parabolic-rate law, and the parabolic-rate constants (k p values) generally increased with temperature. It was found that the oxidation k p values of the Pd4-AF are slightly lower than those of the Pd4-BMG, indicating that the porous structure contributes to improving the overall oxidation resistance. The scale formed on the alloys was composed exclusively of CuO at T ≥ 548 K (275 °C), whose thickness gradually increased with increasing temperature. In addition, the amorphous structure remained unchanged at T ≤ 548 K (275 °C), while a triplex-phase structure developed after the oxidation at higher temperatures, consisting of Pd2Ni2P, Cu3P, and Pd3P.  相似文献   

11.
The Cu solubility was measured in the CaO-B2O3 and BaO-B2O3 slag systems to understand the dissolution mechanism of Cu in the slags. The Cu solubility had a linear relationship with oxygen partial pressure in the CaO-B2O3 slag system, which corresponds with previous studies. Also, the Cu solubilities in slag decreased with increasing the slag basicity, which value of slope was close to –0.5 in logarithmic form. From the results of experiment, the Cu dissolution mechanism established as follows:
\textCu + \frac14\textO2 = \textCu + + \frac12\textO2 - {\text{Cu}} + \frac{1}{4}{\text{O}}_{2} = {\text{Cu}}^{ + } + \frac{1}{2}{\text{O}}^{2 - }  相似文献   

12.
We have investigated the mechanical behavior of a composite material consisting of a Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix with 60 vol pct tungsten particles under uniaxial compression over a range of strain rates from 10−4 to 104 s−1. In contrast to the behavior of single-phase metallic glasses, the failure strength of the composite increases with increasing strain rate. The composite shows substantially greater plastic deformation than the unreinforced glass under both quasi-static and dynamic loading. Under quasi-static loading, the composite specimens do not fail even at nominal plastic strains in excess of 30 pct. Under dynamic loading, fracture of the composite specimens is induced by shear bands at plastic strains of approximately 20 to 30 pct. We observed evidence of shear localization in the composite on two distinct length scales. Multiple shear bands with thicknesses less than 1 μm form under both quasi-static and dynamic loading. The large plastic deformation developed in the composite specimens is due to the ability of the tungsten particles both to initiate these shear bands and to restrict their propagation. In addition, the dynamic specimens also show shear bands with thicknesses on the order of 50 μm; the tungsten particles inside these shear bands are extensively deformed. We propose that thermal softening of the tungsten particles results in a lowered constraint for shear band development, leading to earlier failure under dynamic loading.  相似文献   

13.
14.
15.
Amorphous Ti50Cu28Ni15Sn7 alloy powders were synthesized by a mechanical alloying (MA) technique. Differential scanning calorimetry (DSC) results showed that, after 7 hours of exposure to the milling process, amorphous Ti50Cu28Ni15Sn7 alloy powders exhibit a wide supercooled liquid region of 61 K. Consolidation of amorphous powders were performed at a temperature slightly higher than the glass transition temperature under a pressure of ∼1.2 GPa, and bulk metallic glass (BMG) discs can be prepared successfully. However, we noticed partial crystallization during the hot pressing process and were not able to achieve full densification of BMG. The Vickers microhardness of Ti50Cu28Ni15Sn7 BMG was 634 kg/mm2, and the trace of the indentation revealed that pre-existing particle boundaries or interfaces between nanocrystals and amorphous matrix may serve as the crack initiation sites. Thus, typical brittle failure of Ti50Cu28Ni15Sn7 BMG was observed and resulted in relatively low fracture stress compared to that estimated by the microhardness. This article is based on a presentation given in the symposium entitled “Bulk Metallic Glasses IV,” which occurred February 25–March 1, 2007 during the TMS Annual Meeting in Orlando, Florida under the auspices of the TMS/ASM Mechanical Behavior of Materials Committee.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号