首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Polymer Composites》2017,38(7):1259-1265
Chemical treatment of reinforcement material is one of the main ways of improving the mechanical properties of natural fiber reinforced polymer composites. In the present study, coir fiber was used as reinforcement material, while polypropylene (PP) and polyethylene (PE) polymer were used as matrix material. Before reinforcing with polymer, raw coir fiber was chemically treated with basic chromium sulfate and sodium bicarbonate in a sieve shaker. Hot‐pressed method was used for composite manufacturing during which the fiber loading was varied at 0, 5, 10, 15, and 20 wt%. Comparison of the properties of raw and chemically treated coir fiber reinforced PP and PE was conducted. Mechanical characteristics of the composites were evaluated using tensile, flexural, impact, and hardness tests. Water absorption test was conducted to know water uptake characteristics. Microstructural analysis using a scanning electron microscope was performed to observe the adhesiveness between the matrix and the fiber. Thermogravimetric analysis was done to observe the physical and chemical changes in fiber and composites. The results showed that chemical treatment improved the physical, mechanical, and thermal properties of the manufactured composites. PP composites had better properties as compared to PE composites, while higher fiber loading resulted in better mechanical properties of the resultant composites. POLYM. COMPOS., 38:1259–1265, 2017. © 2015 Society of Plastics Engineers  相似文献   

2.
Jute and coir fiber‐reinforced polypropylene (PP) composites (45 wt% fiber) were prepared by compression molding. Composites were fabricated with irradiated jute fiber/irradiated PP and irradiated coir fiber/irradiated PP at different doses (250–1,000 krad). It was revealed that jute‐based composites had better mechanical properties as compared to coir‐based composites. Interfacial shear strength of jute/PP and coir/PP systems was measured by using the single‐fiber fragmentation test. Scanning electron microscopy investigation shows poor fiber matrix adhesion for coir‐based composites than that of jute‐based composites. Water uptake and soil degradation tests of the composites were also performed. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

3.
In the current study, bamboo fibers were modified with sodium meta‐periodate in order to improve the mechanical and thermal properties of the bamboo‐clay‐polypropylene (PP) composites. Both raw and treated bamboo fibers were used in the manufacturing of the composites. The mechanical and thermal properties of the composites from modified bamboo fibers were found to increase considerably compared with those of untreated fibers. Tensile strengths of (raw bamboo fiber)/PP, (raw bamboo fiber‐clay)/PP, and (treated bamboo fiber‐clay)/PP composites showed a decreasing trend with increasing fiber loadings. However, the values for the chemically modified (bamboo fiber)‐clay‐PP composite at all mixing ratios were found to be higher than that of the original PP. The scanning electron micrographs showed that interfacial bonding between the treated fiber‐clay and matrix has significantly improved. It was determined that better dispersion of the filler into matrix occurred on 5% clay addition and fiber treatment. J. VINYL ADDIT. TECHNOL., 21:253–258, 2015. © 2014 Society of Plastics Engineers  相似文献   

4.
The effect of coir surface modification on the compatibility of polypropylene (PP)/coir fiber (CF) composites, in the presence and absence of compatibilizer (maleic anhydride grafted polypropylene, PP‐g‐MA) was assessed. Chemical pulping of the fibers was performed with 2, 4, 8, and 12% NaOH solutions for a period of 2 h at (100 ± 4)°C. Pressed composite samples were subjected to tensile testing, scanning electron (SEM) and atomic force microscopy (AFM). Lignin and holocellulose concentrations of untreated and treated coir were determined. Pulping resulted in increased tensile strength of the composites containing coir treated with up to 2% NaOH, due to increased fiber roughness as evidenced by AFM. This property decreased when higher NaOH concentrations were used, likely due to increased deterioration of coir. The presence of compatibilizer in the PP composites containing treated coir altered adhesion due to chemical changes of the fiber surface. At high NaOH concentrations increased delignification and therefore increased exposure of hydroxyls favors reaction between the fiber hydroxyls and the carboxyl acids of the hydrolyzed maleic anhydride, present in the composites. POLYM. ENG. SCI., 55:2050–2057, 2015. © 2014 Society of Plastics Engineers  相似文献   

5.
Hybrid composites were fabricated by compounding process with varying the relative weight fraction of oil palm empty fruit bunch (EFB) and coir fibers to assess the effect of hybridization of oil palm EFB with coir fibers in polypropylene (PP) matrix. The mechanical and morphological properties of oil palm/coir hybrid composites were carried out. Tensile and flexural properties of oil EFB‐PP composites enhanced with hybridization of coir fibers except coir/oil palm EFB (25:75) hybrid composite, whereas highest impact properties at oil palm:coir fibers with 50:50 ratios. Results shown that hybrid composites with oil palm:coir fibers with 50:50 ratios display optimum mechanical properties. In this study, scanning electron microscopy (SEM) had been used to study morphology of tensile fractured surface of hybrid composites. Its clear from SEM micrograph that coir/EFB (50:50) hybrid composites display better tensile properties due to strong fiber/matrix bonding as compared with other formulations which lead to even and effective distribution of stress among fibers. The combination of oil palm EFB/coir fibers with PP matrix produced hybrid biocomposites material can be used to produce components such as rear mirrors' holder and window levers, fan blades, mallet, or gavel. POLYM. COMPOS., 35:1418–1425, 2014. © 2013 Society of Plastics Engineers  相似文献   

6.
Coir and abaca fiber‐reinforced linear low density polyethylene (LLDPE) composites (30 wt% fiber) were prepared by compression molding. Coir and abaca fibers were treated with methyl methacrylate (MMA) using ultraviolet radiation to improve the mechanical properties of the composites. Concentration of MMA and radiation dose was optimized. It was found that 30% MMA in methanol along with photoinitiator Darocur‐1173 (2%) and 15th pass of radiation rendered better performance. Chemically treated fiber‐reinforced specimens yielded better mechanical properties compared to the untreated composites, whereas coir fiber composites had better mechanical properties than abaca fiber reinforced ones. For the improvement of the properties, optimized coir (coir fiber treated with 30% MMA) and abaca (abaca fiber treated with 40% MMA) fibers were again treated with aqueous starch solution (2%–8%, w/w) for 2–7 min. Composites made of 3%‐starch‐treated coir fiber (5 min soaking time) showed the best mechanical properties than that of abaca‐fiber‐based composites. Water uptake and soil degradation tests of the composites were also performed. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

7.
Short bamboo fiber reinforced polypropylene composites were prepared by incorporation of various loadings of chemically modified bamboo fibers. Maleic anhydride grafted polypropylene (MA‐g‐PP) was used as compatibilizer to improve fiber–matrix adhesion. The effects of bamboo fiber loading and modification of the resin on the physical, mechanical, thermal, and morphological properties of the bamboo reinforced modified PP composites were studied. Scanning electron microscopy studies of the composites were carried out on the interface and fractured surfaces. Thermogravimetric analysis and IR spectroscopy were also carried out. At 50% volume fraction of the extracted bamboo fiber in the composites, considerable increase in mechanical properties like impact, flexural, tensile, and thermal behavior like heat deflection temperature were observed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Betel nut leaf fiber (BNLF) is a new finding as cellulosic filler for polymer composites. Its main constituents are 75% α‐cellulose, 12% hemicelluloses, 10% lignin, and 3% others matter, viscosity average molecular weight 132,000 and degree of crystallinity 70%. In the present work, BNLF reinforced polypropylene (PP) composites were prepared using heat press molding method. 5–20 wt% short length fiber is taken for getting benefits of easy manufacturing and the fiber was chemically treated with NaOH, dicumyl peroxide (DCP), and maleic anhydride‐modified PP (MAPP) to promote the interfacial bond with PP. The extent of modification of fiber was assessed on the basis of morphology, bulk density, moisture absorption, thermal, and mechanical properties of untreated fiber, treated fiber, and their reinforcing PP composites. The tensile and flexural strength of composites increase with the increase of fiber loading up to 10 and 20 wt%, respectively. It was also observed that Young's modulus and flexural modulus increase with fiber loading. The thermal degradation behavior of resulting composites was investigated. Among the various treated fibers, MAPP‐treated fiber composite showed best interfacial interactions as well as mechanical and thermal properties. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

9.
The surface properties of polypropylene (PP) fibers have an important effect on their reinforcing efficiency in cementitious composites. Two new methods of modifying the surface of subdenier monofilament polypropylene fibers were introduced, as well as the performances of the fiber‐reinforced mortar. The results show that the surface modification improved the mechanical performance of the fiber‐reinforced mortars, such as compressive strength and flexural strength, and the reinforcing efficiency depends on the adopted method. The enhanced interfacial bonding between treated fibers and the cementitious matrix, compared with that of unmodified fibers, was investigated using scanning electronic microscopy. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2637–2641, 2004  相似文献   

10.
玻纤增强PP热塑性片材的制备及力学性能研究   总被引:1,自引:0,他引:1  
采用熔融浸渍法制备了玻璃纤维毡增强聚丙烯(PP)热塑性复合片材;通过在PP中加入复合改性PP改善了基体与增强纤维间的相容性;考察了相容剂、PP种类及玻纤毡种类对复合片材的影响。结果表明,相容剂的加入可使复合片材的拉伸强度提高29%、拉伸模量提高23%、弯曲强度提高42%、弯曲模量提高25%;高熔体质量流动速率PP可使片材的弯曲与冲击性能进一步改善。连续玻纤毡和长玻纤毡增强PP复合片材,前者综合力学性能良好,而后者则冲击强度较弱、弯曲性能加强。  相似文献   

11.
《国际聚合物材料杂志》2012,61(11):997-1013
Fique fibers reinforced polypropylene (PP) composites have been investigated for different fiber lengths and contents. Fiber/matrix interfacial adhesion has been modified by fiber treatments such as mercerization, esterification with maleic anhydride, and adding of an isocyanate compound. A copolymer of polypropylene with maleic anhydride has been employed as compatibilizer agent, by previous mixing with PP matrix. Both compatibilization ways improve fiber/matrix adhesion, as shown by changes of the free surface energy of fibers and also by SEM analysis. Addition of the compatibilizer agent leads to higher flexural properties than those obtained for composites where the fibers were treated. Dynamical mechanical properties of composites seem to indicate that movement in the crystalline PP phase, possibly occurring on the fiber/matrix interphase, takes place in between the glass transition and the melting temperatures of PP matrix.  相似文献   

12.
In this article, an eco‐friendly and cost effective surface treatment method is proposed for hemp fiber, enabling fabrication of hemp fiber/polypropylene (PP) composites, which show better mechanical properties than the PP composites containing untreated or alkali treated hemp fiber. Various techniques, such as scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), moisture analysis, and differential scanning calorimetry (DSC), are employed for the characterization of hemp fiber and polymer composites interface. Based on these results, the conventional alkali treatment of hemp fiber results in the damage of elementary fiber by eliminating parts of lignin and hemicellulose, which could be the reason for the decline of mechanical properties for the resulted polymer composites. On the contrary, water treatment cleans the fiber surface by effectively removing the water‐soluble polysaccharides while ensures minimum degradation on elementary fiber structure, which contributes to the improved mechanical properties of final polymer composites: the Young's modulus, fracture stress and fracture strain were enhanced by 3.66, 7.86, and 14.6%, respectively, when compared with untreated fiber reinforced composites. POLYM. COMPOS., 37:385–390, 2016. © 2014 Society of Plastics Engineers  相似文献   

13.
Natural fibers are rich in cellulose and they are a cheap, easily renewable source of fibers with the potential for polymer reinforcement. The presence of large amounts of hydroxyl groups makes natural fibers less attractive for reinforcement of polymeric materials. Composites made from polystyrene (PS)/styrene butadiene rubber (SBR) blend and treated rice husk powder (RHP) were prepared. The RHP was treated by esterification and acetylation. A similar series of composites was also prepared using maleic anhydride–polypropylene (MA–PP) as a coupling agent. The processing behavior, mechanical properties, effect of thermooxidative ageing, and surface morphology of untreated and chemically modified RHP were studied. There was a decrease in tensile strength (except MA–PP composites), elongation at break, and Young's modulus in chemically treated RHP composites. The postreaction process during thermooxidative ageing enhanced the tensile strength and Young's modulus of the esterified and MA–PP composites. Acetylation treatment was effective in reducing the percentage of water absorption in RHP/PS–SBR composites. In general chemically treated RHP/PS–SBR composites and MA–PP showed a better matrix phase and filler distribution. However, the degree of filler–matrix interaction was mainly responsible for the improvement of mechanical properties in the composites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3320–3332, 2004  相似文献   

14.
基于熔融共混法,分别采用双转子连续混炼挤出机和同向啮合双螺杆挤出机制备了20 %玻璃纤维增强聚丙烯(GFRPP)复合材料,并对制备出的GFRPP复合材料中玻璃纤维残存长度及其力学性能进行了相应表征,在此基础上探讨了具有不同混炼特性的混炼设备结构对GFRPP复合材料中玻璃纤维残存长度及其力学性能的影响。结果表明,GFRPP复合材料的力学性能随玻璃纤维残存长度的增加而明显提高;双转子连续混炼挤出机相对于同向啮合双螺杆挤出机更有利于保留长玻璃纤维,同时适当减弱双转子连续混炼挤出机的转子的分散混合能力,降低转子转速,有利于提高玻璃纤维的残存长度,制备出更高性能的GFRPP复合材料。  相似文献   

15.
For meeting the requirements of lightweight and improved mechanical properties, composites could be tailor-made for specific applications if the adhesion strength which plays a key role for improved properties can be predicted. The relationship between wettability and adhesion strength has been discussed. The microstructure of interphases and adhesion strength can be significantly altered by different surface modifications of the reinforcing fibers, since the specific properties of the interphase result from nucleation, thermal and/or intrinsic stresses, sizing used, interdiffusion, and roughness. The experimental results could not confirm a simple and direct correlation between wettability and adhesion strength for different model systems. The main objective of the work was to identify the interphases for different fiber/polymer matrix systems. By using phase imaging and nanoindentation tests based on atomic force microscopy (AFM), a comparative study of the local mechanical property variation in the interphase of glass fiber reinforced epoxy resin (EP) and glass fiber reinforced polypropylene matrix (PP) composites was conducted. As model sizings for PP composites, γ-aminopropyltriethoxysilane (APS) and either polyurethane (PU) or polypropylene (PP) film former on glass fibers were investigated. The EP-matrix was combined with either unsized glass fibers or glass fibers treated with APS/PU sizing. It was found that phase imaging AFM was a highly useful tool for probing the interphase with much detailed information. Nanoindentation with sufficiently small indentation force was found to be sufficient for measuring actual interphase properties within a 100-nm region close to the fiber surface. Subsequently, it also indicated a different gradient in the modulus across the interphase region due to different sizings. The possibilities of controlling bond strength between fiber surface and polymer matrix are discussed in terms of elastic moduli of the interphases compared with surface stiffness of sized glass fibers, micromechanical results, and the mechanical properties of real composites.  相似文献   

16.
粉末浸渍长玻璃纤维增强聚丙烯的注塑   总被引:1,自引:0,他引:1  
周晓东  张翼等 《中国塑料》2001,15(10):47-50
采用粉末浸渍的方法制备连续玻璃纤维增强聚丙烯预浸料,经切割获得长纤维增强聚丙烯粒子,探索了材料的注塑工艺,研究了注塑后材料的力学性能及其影响因素。结果表明,粉末浸渍的长纤维增强聚丙烯经注塑后可获得力学性能的制品;随着预浸料切割长度的增长、纤维含量的增加,材料的力学性能提高;在基体聚丙烯中添加接枝极性基团的功能化聚丙烯,可改善体系的界面结合,提高材料的力学性能,但功能化聚丙烯的含量超过一定值后,材料的冲击强度有所下降;控制注塑时的模具温度,可以改变材料的一些力学性能。  相似文献   

17.
Flax fibers are widely used as reinforcements in bio‐based polymer matrix composites. This study investigated the hydrophilic nature and surface purity of flax fiber that affects fiber/matrix adhesion in combination with hydrophobic structural polymers via matrix modification and the utilization of fiber treatment, specifically in a flax/vinyl ester (VE) composite. A new method to manipulate the vinyl ester system with acrylic resin (AR) was developed to produce flax reinforced. On the other hand, different types of chemical and physical treatments were applied on the flax fiber. FTIR was applied to evaluate the effects of surface treatments. Dynamic mechanical analysis (DMA) was used to analyze the unmodified and modified VE resin system. The surface of untreated and treated flax fibers and their composites were analyzed by scanning electronic microscopy (SEM). Sodium ethoxide‐treated flax/VE with 1% (wt) AR caused the best mechanical performance among all the flax/VE composites evaluated. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
The viability of the thermomechanical recycling of postconsumer milk pouches [a 50 : 50 low‐density polyethylene/linear low‐density polyethylene (LDPE–LLDPE) blend] and their use as polymeric matrices for coir‐fiber‐reinforced composites were investigated. The mechanical, thermal, morphological, and water absorption properties of recycled milk pouch polymer/coir fiber composites with different treated and untreated fiber contents were evaluated and compared with those of virgin LDPE–LLDPE/coir fiber composites. The water absorption of the composites measured at three different temperatures (25, 45, and 75°C) was found to follow Fickian diffusion. The mechanical properties of the composites significantly deteriorated after water absorption. The recycled polymer/coir fiber composites showed inferior mechanical performances and thermooxidative stability (oxidation induction time and oxidation temperature) in comparison with those observed for virgin polymer/fiber composites. However, a small quantity of a coupling agent (2 wt %) significantly improved all the mechanical, thermal, and moisture‐resistance properties of both types of composites. The overall mechanical performances of the composites containing recycled and virgin polymer matrices were correlated by the phase morphology, as observed with scanning electron microscopy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

19.
Biocomposites are prepared from a cheap, renewable natural fiber, coir (coconut fiber) as reinforcement with a biodegradable polyester amide (BAK 1095) matrix. In order to have better fiber‐matrix interaction the fibers are surface modified through alkali treatment, cyanoethylation, bleaching and vinyl grafting. The effects of different fiber surface treatments and fiber amounts on the performance of resulting bio‐composites are investigated. Among all modifications, cyanoethylated coir‐BAK composites show better tensile strength (35.50 MPa) whereas 7% methyl methacrylate grafted coir‐BAK composites show significant improvement in flexural strength (87.36 MPa). The remarkable achievement of the present investigation is that a low strength coir fiber, through optimal surface modifications, on reinforcement with BAK show an encouraging level of mechanical properties. Moreover, the elongation at break of BAK polymer is considerably reduced by the incorporation of coir fibers from nearly 400% (percent elongation of pure BAK) to 16‐24% (coir‐BAK biocomposites). SEM investigations show that surface modifications improve the fiber‐matrix adhesion. From biodegradation studies we find that after 52 days of soil burial, alkali treated and bleached coir‐BAK composites show significant weight loss. More than 70% decrease in flexural strength is observed for alkali treated coir‐BAK composites after 35 days of soil burial. The loss of weight and the decrease of flexural strength of degraded composites are more or less directly related.  相似文献   

20.
Chitosan was used as filler in polypropylene (PP) polymer. In order to improve compatibility between chitosan and PP, chitosan was chemically modified with 3-aminopropyltriethoxysilane (3-APE). The results show that the increasing of filler content decreased tensile strength and elongation at break, but increased Young's modulus of composites. The treated composites exhibit higher tensile strength and Young's modulus, but lower elongation at break compared untreated composites. The addition of 3-APE has improved thermal properties such as thermal stability and crystallinity of treated composites. SEM study of the tensile fracture surface of treated composites shows better interfacial interaction and adhesion between the chitosan-PP matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号