首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N. Zhang  S. Zhang  Y. Gao  G. Yin 《Fuel Cells》2013,13(5):895-902
In this work, Pt nanoparticles are deposited on NbO2‐modified carbon composites and evaluated as promising direct methanol fuel cell (DMFC) electrocatalysts. Transmission electron microscopy (TEM) and X‐ray diffraction (XRD) indicate that Pt nanoparticles (about 2.5 nm) are uniformly dispersed on NbO2‐modified carbon composites. Electrochemical measurements show that the mass activity toward methanol electrooxidation on Pt/NbO2‐C is as high as 3.0 times that of conventional Pt/C. Meanwhile, the onset potential of CO oxidation is negatively shifted by about 46 mV as compared with that of Pt/C, which means that the synergistic effect between NbO2 and Pt facilitates the feasible removal of poisoning intermediate CO during methanol electrooxidation. X‐ray photoelectron spectroscopy (XPS) characterizations reveal the electron transfer from Nb to Pt, which suppress the poisoning CO adsorption on Pt nanoparticles and facilitate methanol electrooxidation. NbO2 nanoparticles facilitate methanol electrooxidation on Pt/C catalyst by synergistic effect and electronic effect, which represents a step in the right direction for the development of excellent fuel cell anode electrocatalysts.  相似文献   

2.
This research is aimed to improve the activity and stability of ternary alloy Pt–Ru–Ni/C catalyst. A novel anodic catalyst for direct methanol fuel cell (DMFC), carbon supported Pt–Ru–Ni–P nanoparticles, has been prepared by chemical reduction method by using NaH2PO2 as a reducing agent. One glassy carbon disc working electrode is used to test the catalytic performances of the homemade catalysts by cyclic voltammetric (CV), chronoamperometric (CA) and amperometric it measurements in a solution of 0.5 mol L–1 H2SO4 and 0.5 mol L–1 CH3OH. The compositions, particle sizes and morphology of home‐made catalysts are evaluated by means of energy dispersive analysis of X‐ray (EDAX), X‐ray diffraction (XRD) and transmission electron micrographs (TEM), respectively. TEM images show that Pt–Ru–Ni–P nanoparticles have an even size distribution with an average diameter of less than 2 nm. The results of CV, CA and it curves indicate that the Pt–Ru–Ni–P/C catalyst shows significantly higher activity and stability for methanol electrooxidation due to the presence of non‐metal phosphorus in comparison to Pt–Ru–Ni/C one. All experimental results indicate that the addition of non‐metallic phosphorus into the Pt–Ru–Ni/C catalyst has definite value of research and practical application for enhancing the performance of DMFC.  相似文献   

3.
The electrooxidation of methanol, ethanol, and 2-propanol was investigated with interdigitated array electrodes (IDAEs). The IDAE oxidizes alcohol at the generator and reduces the reaction intermediates produced by the oxidation process at the collector. Thus, the reaction intermediates can be estimated with the IDAE. The IDAE in the present work was made of sputter deposited Pt and Pt–Ru. The use of Ru free and added electrodes provides information on the effect of Ru addition on the alcohol oxidation. Cyclic voltammetric analyses revealed that Ru addition enhances the oxidation currents and reduces the Eonset of the alcohols. The detectable reaction intermediate at the methanol and ethanol oxidation was proton, while the intermediate species was acetone in 2-propnaol oxidation.  相似文献   

4.
为研究水蒸气处理后热处理对炭黑表面特性的影响,提高DMFC阳极催化剂的催化活性,利用先水蒸气处理后热处理的Vnlcan XC-72炭黑为载体制备Pt-Ru/C催化剂,与水蒸气处理的和未经处理的炭载体制备Pt-Ru/C催化剂的性能进行比较.采用XPS和BET测试了处理后的炭粉表面的含氧浓度和比表面,结果表明:水蒸气处理后,炭载体比表面积增大,含氧浓度降低;水蒸气处理后热处理,炭载体比表面积进一步减小,含氧浓度增加.用XRD对催化剂的结构进行了表征,结果表明:水蒸气处理后热处理的炭黑为载体制备Pt-Ru/C催化剂结晶状态良好,催化剂颗粒较小.在0.5mol/L CH3OH和0.5mol/L H2SO4混合溶液中,利用玻炭电极测试了循环伏安曲线和阶跃电位曲线,结果表明:用先水蒸气处理后热处理的炭粉为载体制备的催化剂比仅水蒸气处理和未经处理的炭粉为载体制备的催化剂的活性最高.  相似文献   

5.
Electrochemical oxidation of methanol on carbon supported Pt/Ru gas diffusion electrodes was investigated in a cyclone flow cell at room temperature using chronoamperometry, cyclic voltammetry and electrochemical impedance spectroscopy. The influence of the flow rate was checked. It was proved that the cyclone cell is suitable for the investigation of methanol electrooxidation and provides additional information on the mass transfer limitations in the electrode assembly. Chronoamperometric measurements showed slow, but constant current decay at all investigated potentials. Impedance measurements in water and methanol containing solutions were performed and the experimental data were fitted to an appropriate equivalent circuit.  相似文献   

6.
Polyaniline films prepared on Au wires were employed as substrates to deposit Pt and/or Ru using a potential-programmed perturbation. Different compositions of Pt and Ru ions in acid electrolyte were employed to decorate the electrodes. The atomic percentages of Pt and Ru on Pani were determined by EDAX and particle size and distribution by SEM. The catalytic activity was tested for adsorbed CO and CH3OH electrooxidation. Nanoparticles of Pt–Ru with different Pt–Ru contents were obtained and characterized for each reaction.  相似文献   

7.
Molybdenum carbide (MoC) and tungsten carbide (WC) are synthesized by direct carbonization method. Pt–Ru catalysts supported on MoC, WC, and Vulcan XC‐72R are prepared, and characterized by X‐ray diffraction, X‐ray photoelectron spectroscopy, and transmission electron microscopy in conjunction with electrochemistry. Electrochemical activities for the catalysts towards methanol electro‐oxidation are studied by cyclic voltammetry. All the electro‐catalysts are subjected to accelerated durability test (ADT). The electrochemical activity of carbide‐supported electro‐catalysts towards methanol electro‐oxidation is found to be higher than carbon‐supported catalysts before and after ADT. The study suggests that Pt–Ru/MoC and Pt–Ru/WC catalysts are more durable than Pt–Ru/C. Direct methanol fuel cells (DMFCs) with Pt–Ru/MoC and Pt–Ru/WC anodes also exhibit higher performance than the DMFC with Pt–Ru/C anode.  相似文献   

8.
R. Zhou  R. Yue  F. Jiang  Y. Du  P. Yang  C. Wang  J. Xu 《Fuel Cells》2012,12(6):971-977
A Pt‐modified Au catalyst featured with novel layered structures and ultra‐low Pt loading has been designed and electrochemically fabricated on a glassy carbon (GC) electrode. SEM characterization suggests that as‐formed Pt/Au/GC electrode grows in a Stranski–Krastanov mode, resulting in a nearly ideal layered structure with Au at the inner layer and Pt at the outer layer. The electrocatalytic activity of the synthesized Pt/Au/GC electrode towards formic acid electrooxidation was studied, and comparative experiments with other modified electrodes (i.e., Pt/GC, Pt/Au, and Pt/Pt) were also conducted. As a result, the electrocatalytic activity of the outer‐layered Pt depends significantly on the intrinsic properties of the substrates. The prepared Pt/Au/GC electrode with Au nanoparticles modified GC as the substrate shows remarkable catalytic activity for the formic acid oxidation, much higher than that of its counterparts, Pt/GC, Pt/Au, and Pt/Pt electrodes. Additionally, the measured electrochemical impedance spectra indicate that the charge‐transfer resistance for formic acid electrooxidation on Pt/Au/GC electrode is smaller than that on other Pt modified electrodes.  相似文献   

9.
Ruthenium modified carbon supported platinum catalysts have been shown to have a similar activity towards carbon monoxide oxidation as conventionally prepared bimetallic PtRu alloy catalysts. In this study the effect of the applied electrode potential and potential cycles on the location and oxidation state of the Ru species in such Ru modified Pt/C catalysts was investigated using in situ EXAFS collected at both the Ru K and Pt L3 absorption edges. The as prepared catalyst was found to consist of a Pt core with a Ru oxy/hydroxide shell. The potential dependent data indicated alloying to form a PtRu phase at 0.05 V versus RHE and subsequent dealloying to return to the Ru oxy/hydroxide decorated Pt surface at potentials greater than 0.7 V. The Ru-O distances obtained indicate that both Ru3+ and Ru4+ species are present on the surface of the Pt particles at oxidising potentials; the former is characteristic of the as prepared Ru modified Pt/C catalyst and following extensive periods at potentials above 0.7 V and the latter of the Ru oxide species on the PtRu alloy.  相似文献   

10.
We report a new method of immobilization of catalytic metal/alloy nanoparticles on a gold disk for transfer from an electrochemical cell to UHV (without sample exposure to air) for XPS analyses. Using this immobilization approach, several samples were examined: a core-shell Pt-on-Ru catalyst prepared from Ru black onto which Pt was spontaneously deposited, commercial Pt/Ru 50:50 nanoparticle alloy, as well as single metal Ru and Pt nanoparticle samples. The catalysts were characterized for the Ru oxidation state and for the methanol electrooxidation activity (as Pt was always metallic). For all bimetallic samples, we found that the reduced nanoparticles were more active towards methanol oxidation than the fully or partially oxidized samples. Regardless the Ru oxidation state however, the activity was lower than that previously reported for Ru decorated Pt nanoparticle catalysts (Ru-on-Pt). Possible reasons for the reactivity differences are discussed.  相似文献   

11.
张歆 《广州化工》1998,26(3):23-25
通过对Pt-Ru/WO3电极的制备及其催化活性研究。在Pt/WO3电极的基础上加入钌元素,能较大地提高低温氧化甲醇的活性和稳定性,是一种有潜力的甲醇直接氧化燃料电池的阳极催化剂。  相似文献   

12.
二甲醚在Pt系催化剂上的电氧化行为初探   总被引:4,自引:0,他引:4  
本实验用化学浸渍-还原法,甲醛为还原剂制备直接二甲醚燃料电池阳极催化剂。用循环伏安法和稳态极化法,采用粉末微电极技术,研究二甲醚在自制Pt/C、PtSn/C和PtRu/C催化剂上的氧化行为。研究结果显示,二甲醚在PtRu/C上有较佳的反应活性。在PtRu/C催化剂上考察温度对于二甲醚电氧化的催化活性的影响,得出温度的升高有利于二甲醚电氧化的进行。  相似文献   

13.
We successfully synthesized 13X zeolite using a hydrothermal method. Then, composites of polyaniline (PANI) with 13X zeolite and PANI–13X with platinum were prepared by chemical oxidative polymerization and chemical reduction, respectively. Field emission scanning electron microscopy, X‐ray diffraction, Raman spectroscopy and Brunauer–Emmett–Teller techniques were used to characterize the PANI–Pt and PANI–Pt–13X composites. Further, the electrocatalytic activity towards methanol oxidation of the synthesized catalysts was explored using cyclic voltammetry in 1 mol L?1 CH3OH + 0.5 mol L?1 H2SO4 solution. From the obtained results, PANI–Pt–13X shows superior performance compared to PANI–Pt towards methanol oxidation and electrical conductivity. Hence, the 13X zeolite‐incorporated PANI–Pt composite could be an efficient catalyst for direct methanol fuel cell applications. © 2019 Society of Chemical Industry  相似文献   

14.
Low platium loading Pt/C catalyst was prepared by direct Pt-embedded carbon xerogel method. The Pt content of the as-prepared Pt/C is about 4.32 wt% and has a typical polycrystalline phase. Textural and structural characteristics of the catalysts were characterized by XRD, EDS and BET. Pt-embedded in carbon xerogel increases the specific surface area and pore volume of the X-Pt/C during carbon gelation and the carbonization process. Electrochemical characteristics of the catalysts for ethanol electrooxidation were measured. The results indicated that the as-prepared 4.32 wt% Pt/C has higher mass current density in ethanol electrooxidation as compared to the 20 wt% Pt/C. This may be due to the high roughness of the Pt surface that is formed during the carbon gelation and carbonization process.  相似文献   

15.
Two types of Pt/Ru electrocatalysts, which have different structural characteristics, were prepared with different synthetic routes. That is, Pt/Ru electrocatalysts were synthesized by the coreduction and successive deposition methods, respectively. The structural and catalytic properties of Pt/Ru electrocatalysts were characterized by XRD, TEM, voltammetry and chronoamperometry. From the XRD analysis, coreduced and successively deposited Pt/Ru electrocatalysts had an alloyed structure. TEM analyses showed that all the electrocatalysts had a highly dispersed state on the Vulcan XC-72R substrate. From the voltammetry, the coreduced electrocatalysts displayed higher catalytic activity than the successively deposited electrocatalysts for the electrooxidation of methanol. These results explain why coreduced catalysts are better able to dehydrogenate methanol and have a greater CO tolerance than the successively deposited ones. But chronoamperometry showed that successively deposited Pt/Ru electrocatalysts had stability similar to that of the coreduced ones. Although the successively deposited electrocatalysts showed lower catalytic activity than the coreduced ones, their enhanced catalytic activity was obtained by the successive deposition method in the comparison of methanol oxidation current density with pure platinum electrocatalyst.  相似文献   

16.
A Pt/C catalyst modified by the Keggin-structure molybdovanadophosphoric acid (PMV) is prepared by cyclic voltammetry and the modified Pt/C catalyst is studied for methanol electrooxidation. The results show that the PMV modified Pt/C catalyst has increased the electron transfer coefficient of the rate-determining step and diminished the adsorption of CO on Pt/C catalysts. Significant improvements in the catalytic activity and stability for methanol electrooxidation are observed, and it indicates that the PMV combined with Pt/C catalyst can be considered as a good electrocatalyst material for potential application in direct methanol fuel cells.  相似文献   

17.
Platinum dispersed in a polyaniline film is a better catalyst than smooth Pt for ethylene glycol electrooxidation in perchloric acid aqueous solutions. The catalytic activity of the platinum microparticles is further enhanced when Ru, Sn or both are codeposited. The PAni/Pt–Sn assembly shows the highest electrocatalytic activity of the electrodes examined. Underpotential deposition of Tl and Bi on dispersed Pt inhibits EG electrooxidation while Pb causes significant catalysis only with a specific preparation method electrocatalyst. The morphology and the identity of the metallic dispersion is examined by transmission electron microscopy.  相似文献   

18.
In this paper, we combined FTIR spectroscopy and COad stripping voltammetry to investigate COad adsorption and electrooxidation on Pt-Ru/C nanoparticles. The Pt:Ru elemental composition and the metal loading were determined by ICP-AES. The X-ray diffraction patterns of the Pt-Ru/C indicated formation of a Pt-Ru (fcc) alloy. HREM images revealed an increase in the fraction of agglomerated Pt-Ru/C particles with increasing the metal loading and showed that agglomerated Pt-Ru/C nanoparticles present structural defects such as twins or grain boundaries. In addition, isolated Pt-Ru/C nanoparticles have similar mean particle size (ca. 2.5 nm) and particle size distributions whatever the metal loading. Therefore, we could determine precisely the effect of particle agglomeration on the COad vibrational properties and electrooxidation kinetics. FTIR measurements revealed a main COad stretching band at ca. , which we ascribed to a-top COad on Pt domains electronically modified by the presence of Ru. As the metal loading increased, the position of this band was blue shifted by ca. 5 cm−1 and a shoulder around 2005 cm−1 developed, which was ascribed to a-top COad on Ru domains. The reason for this was suggested to be the increasing size of Ru domains on agglomerated Pt-Ru/C particles, which lifts dipole-dipole coupling and allows two vibrational features to be observed (COad/Ru, COad/Pt). This is evidence that FTIR spectroscopy can be used to probe small chemical fluctuations of the Pt-Ru/C surface. Finally, we comment on the COad electrooxidation kinetics. We observed that COad was converted more easily into CO2 as the metal loading, i.e. the fraction of agglomerated Pt-Ru/C nanoparticles, increased.  相似文献   

19.
针对室内检测中氨气给人体带来的危害,提出一种基于沸石分子筛改性的室内氨气吸附处理方法。为验证沸石分子筛改性的可行性,利用氨气与金属氯化物容易形成络化物的原理,对13X沸石分子筛进行改性,得到经氯化铜和氯化镍改性后的吸附效果更佳;以改性后的13X沸石分子筛作为原材料,分析不同吸附颗粒大小、浸渍液浓度、吸附压力等对吸附效果的影响;最后根据上述的实验结果,找到最佳的试验处理方法,以此提升对空气中氨气吸附的效果。  相似文献   

20.
Carbon supported Pt/Pb and Pt/Ru/Pb catalysts were prepared by deposition of Pb on commercial Pt and Pt/Ru catalysts, respectively. It was found that after addition of Pb, the catalytic activity of Pt and Pt/Ru for ethanol oxidation increased greatly, especially at high potentials. It has been shown that decorating commercial Pt and Pt/Ru catalysts with Pb is a simple and effective way to prepare carbon supported Pt/Pb and Pt/Ru/Pb catalysts for ethanol oxidation. The physical properties of the catalysts were characterized by XRD, EDX and TEM, and it was found that no Pt/Pb and Pt/Ru/Pb alloys were formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号