首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《稀土》2016,(3)
利用X射线衍射仪(XRD)和VSM测量La_(1-x)Ce_xFe_(11.44)Si_(1.56)合金吸氢前后的相结构及磁性曲线,利用DSC测量了La_(0.8)Ce_(0.2)Fe_(11.44)Si_(1.56)Hy的热重曲线。结果表明,La_(1-x)Ce_xFe_(11.44)Si_(1.56)合金及其氢化物的主相均为NaZn_(13)型立方结构,吸氢后合金的居里温度明显升高,在室温空气中放置一段时间后,仍能保持良好的稳定性;La_(0.8)Ce_(0.2)Fe_(11.44)Si_(1.56)Hy合金约从483 K到708 K一直处于失重状态,氢化物的失重率为0.19%;通过提高放氢温度,La_(0.9)Ce_(0.1)Fe_(11.44)Si_(1.56)Hy合金的居里温度降低,放氢温度每提高10 K居里温度下降10 K左右,但对合金的等温磁熵变影响很小,熵变最小的样品与无放氢样品的熵变相差仅0.616 J/(kg·K)。  相似文献   

2.
《稀土》2015,(6)
在La(FeSi)_(13)基合金中加入少量间隙原子B后,分别以Co、Mn原子替代Fe原子,熔炼得到的合金样品再吸氢,利用X射线衍射物相分析(XRD)和振动样品磁强计(VSM)测量合金吸氢前后的相结构和磁性能。研究表明,用Co替代Fe原子后,La(FeSi)_(13)B_(0.2)合金的居里温度Tc提高,用Mn替代Fe原子后,La(FeSi)_(13)B_(0.1)合金的居里温度Tc会降低.两种替代都会使La(FeSi)_(13)B_x合金的等温磁熵变降低,但相对于金属Gd来说,其等温磁熵变还保持在一个相对较大的值。吸氢后添加Co和Mn的两种合金的居里温度Tc分别大幅度提升到378 K和279 K,而其等温磁熵变相对于吸氢前略微降低,分别降低为7.9 J/(kg·K)和6.9J/(kg·K)。  相似文献   

3.
研究了La0.6Pr0.4Fe11.4Si1.6B0.2合金及其氢化物La0.6Pr0.4Fe11.4Si1.6B0.2Hy的制备工艺与磁热效应。室温XRD分析与SEM成分分析表明La0.6Pr0.4Fe11.4Si1.6B0.2合金主相为NaZn13型立方结构(空间群为Fm-3c),存在富La相(空间群为P4/nmm)与富Fe相。氢化物La0.6Pr0.4Fe11.4Si1.6B0.2Hy的晶格常数a由合金的1.2295 nm增大到1.2491 nm。DSC测定氢化物的氢含量y约为1.7。磁性测量结果表明:氢化物La0.6Pr0.4Fe11.4Si1.6B0.2Hy的居里温度TC由合金的198 K增至325 K,提高了127 K。在0~1.5 T外磁场下合金与氢化物最大磁熵变-ΔSmMax均为9.1 J.kg-.1K-1。氢化物La0.6Pr0.4Fe11.4Si1.6B0.2Hy在室温下搁置190 d后物相与磁热效应基本保持不变。  相似文献   

4.
徐超  李国栋  王利刚 《稀有金属》2005,29(6):927-930
通过X射线衍射和磁性测量等手段对金属间化合物La0.8Ce0.2(Fe1-xCox)10.5Si2.5(x=0,0.02,0.04,0.06)系的结构、磁性以及磁熵变进行了研究.实验发现,La0.8Ce0.2(Fe1-xCox)10.5Si2.5系的晶体结构均保持立方NaZn13型结构.随着Co含量x的不断增大,晶格常数将单调减小,居里温度TC呈单调增加.当x=0.02时,该化合物在居里温度TC~239K具有较高的磁熵变︱ΔSM︱,在1 T的磁场下(ΔSM)max为2.87 J·kg-1·K-1.当x=0.04和0.06时,居里温度在室温附近,磁熵变有了一定程度的降低,但仍有可观的磁熵变.最后,对该系列合金作为近室温磁制冷工质的可能性作了适当地探讨.  相似文献   

5.
《稀土》2017,(1)
研究了La_(0.9)Ce_(0.1)Fe_(11.45)Si_(1.55)H_(1.8)合金及其粉末粘结样品的磁热性能,通过在吸氢后粉末化的合金中加入一定量的粘接剂,制备出块状的化合物,利用X射线衍射物相分析(XRD)和振动样品磁强计(VSM)测量了合金吸氢前后的相结构和磁性曲线。研究表明,粘结后的样品主相仍然为NaZn_(13)型立方结构,同时材料中存在少量的杂相α-Fe。氢原子进入晶格间隙导致合金的居里温度明显升高,但氢化物合金及其粉末粘结样品的最大等温磁熵变降低相比吸氢前更明显,一级相变特征减弱。粉末粘结样品的居里温度略微降低于氢化物合金。粘结化合物的最大等温磁熵变相对于氢化物合金也略微降低,但与二级相变金属Gd比仍保持较高的磁热性能。悬浮熔炼的La_(0.9)Ce_(0.1)Fe_(11.45)Si_(1.55)合金经1070℃退火处理144 h后样品居里温度190 K,最大磁熵变为11.82 J/(kg·K),经320℃和0.03 MPa压力吸氢6 h后,居里温度提高到335 K,最大磁熵变为6.7 J/(kg·K)。粘结氢化物在250 MPa压力下成型5 min后,获得样品的最大磁熵变为6.05 J/(kg·K),居里温度为331 K。  相似文献   

6.
使用电弧熔炼法制备了La1.1Fe11.4Si1.55Ge0.05合金。研究了用少量的Ge替代Si后,La1.1Fe11.4Si1.55Ge0.05合金的磁性和磁热效应。粉末X射线衍射结果表明:在1273K真空退火处理10d后,合金La1.1Fe11.4Si1.55Ge0.05主相为NaZn13型立方结构,存在微量的α-Fe相。热磁曲线M-T与Arrott曲线表明:在居里温度Tc=205K处发生由铁磁性(TTc)转变为顺磁性(TTc)的二级磁相变。在磁场变化0~1.5T下,根据等温磁化曲线通过Maxwell关系式计算得出最大磁熵变-ΔSmmax=9J.kg-.1K-1。Ge替代Si后该合金在其居里温度Tc处-ΔSm-T曲线半高宽增大,使合金的相对制冷能力RCP(S)有所提高。  相似文献   

7.
通过高频熔炼、高温短时退火及吸氢的方法获得了饱和La_(0.9)Ce_(0.1)Fe_(11.44)Si_(1.56)H_(1.56)含氢合金,对吸氢后的样品进行研磨,采取粉末粘结及压制成型的方法制备出粘结La_(0.9)Ce_(0.1)Fe_(11.44)Si_(1.56)H_(1.56)块状含氢合金。利用扫描电子显微镜(SEM)、万能试验机、振动样品磁强计(VSM)及磁热效应(MCE)直接测量仪对样品的微观结构、力学性能和磁热效应进行了研究。吸氢之后含氢合金样品的Curie温度达到室温附近,但合金经吸氢后沿其晶界碎裂,力学性能下降,不适合磁制冷机的运行环境。在700 MPa的压力下,采用环氧树脂粘结的方法把脆化的含氢合金压制成圆柱状块体。粉末粘结后的含氢合金块体为多孔结构,在不同的颗粒之间存在有大量的孔隙和边界,研磨后粒度0.20 mm的块状含氢合金的最大抗压强度达到205 MPa。在1.5 T的低磁场下,具有比二级相变材料Gd金属和La-Fe-Co-Si-B合金更优异的磁热性能,绝热温变和等温磁熵变的最大值分别达到2.7 K和7.5 J·(kg·K)~(-1),可以作为室温磁工质应用于磁制冷机中。  相似文献   

8.
通过电弧炉熔炼法制备了LaFe11.4Si1.6-x P x(x=0.05,0.1,0.2,0.3)系列合金,XRD分析表明少量P元素替代,LaFe11.4Si1.6-x P x(x=0.05,0.1,0.2和0.3)合金仍然保持NaZn13型结构,但晶格常数减小。在居里温度T c附近磁化曲线表明,该系列合金经历由磁场引起巡游电子由顺磁态到铁磁态变磁转变的一级相变。随着P含量的增加,LaFe11.4Si1.6-x P x(x=0.05,0.1和0.2)的居里温度T c减小,等温磁熵变也减小。在外加磁场变化为0~1.5 T时,等温磁熵变最大值分别为19.3 J/(kg·K),15.3 J/(kg·K)和10.3 J/(kg·K)。  相似文献   

9.
The structure and magnetocaloric properties of La1–xCexFe11.44Si1.56 and their hydrides La1–xCexFe11.44Si1.56Hy(x=0, 0.1, 0.2, 0.3, 0.4) were investigated.The samples crystallized mainly in the cubic Na Zn13-type structure with a small amount of α-Fe phase as impurity.The lattice constants and Curie temperature presented the same change tendency with increasing of Ce content.For the hydrides, the influence of Ce content on lattice constants was weakened and the values of H concentration y were approximate to be 1.56.The La1–xCexFe11.44Si1.56 compounds exhibited large values of isothermal entropy change –ΔSm around the Curie temperature TC under a low magnetic field change of 1.5 T.The value of –ΔSm increased and then decreased with increasing Ce content, reached the maximum, 26.07 J/kg·K for x=0.3.TC increased up to the vicinity of room temperature by hydrogen absorption for the Ce substituted compounds, but TC only slightly decreased with increasing Ce content.The first-order metamagnetic transition was still kept in the hydrides and the maximum values of –ΔSm were lower than those of the La1–xCexFe11.44Si1.56 compounds, but still remained large values, about 10.5 J/kg K under a magnetic field change of 1.5 T.The values of –ΔSm were nearly independent of the Ce content and did not increase with increasing x for the hydrides.The La1–xCexFe11.44Si1.56Hy(x=0–0.4) hydrides exhibited large magnetic entropy changes, small hysteresis loss and effective refrigerant capacity covered the room temperature range from 305 to 317 K.These hydrides are very useful for the magnetic refrigeration applications near room temperature under low magnetic field change.  相似文献   

10.
采用SPS(放电等离子烧结技术)制备了La(Fe11.2Co0.7Si1.1)B0.25合金,并进行了不同时间的热处理。利用XRD及SEM检测了合金的相结构及组织结构,同时对合金的等温磁熵变和绝热温变进行了研究。结果表明,随热处理时间的增加,合金的α-Fe相逐渐减少,主相La(Fe,Si)13相逐渐增加,其等温磁熵变和绝热温变也都逐渐增加。  相似文献   

11.
Ni_(43)Mn_(46-x)T_xSn_(11)(T=Fe,Co,Ni)合金的马氏体相变和磁熵变   总被引:2,自引:1,他引:1  
通过示差扫描量热仪和振动样品磁强计对Ni43Mn46-xTxSn11(T=Fe,Co,Ni)铁磁形状记忆合金的相变、磁性以及磁熵变进行了研究。结果表明,由于价电子浓度的增加,Fe,Co,Ni替代Mn使马氏体转变温度大幅提高。Fe,Ni掺杂对马氏体居里温度(TCM)影响不大,Co则使TCM略有下降;奥氏体居里温度(TCA)对成分比较敏感,Fe,Ni的加入均使TCA略有提高,而Co则会大大提高TCA。由于马氏体相变伴随着磁化强度的突变,Ni43Mn46-xTxSn11合金在马氏体相变附近具有较大的低场磁熵变,对于Ni43Mn41Co5Sn11在室温1T磁场下磁熵变达到了19J.kg-.1K-1。通过调节成分,磁熵变峰值温度可以在199和294K之间调节,同时保持了较大低场磁熵变。  相似文献   

12.
热处理工艺对( Mn,Fe)2(P,Si)系列化合物磁性的影响   总被引:1,自引:1,他引:0  
用机械合金化方法成功制备了Mn1.35Fe0.65 P1-x Six(x=0.56和0.57)化合物,分别采用了两种不同的工艺对化合物进行热处理.用X射线衍射仪、振动样品磁强计和绝热温变测量仪分别对样品的结构、等温磁熵变和绝热温变进行了测量.实验结果表明,经过两种不同热处理工艺处理的化合物都形成了Fe2P型六角结构,空间群为P62m,在经过淬火处理的Mn1..Fe0 eP0..Si0.56化合物中存在少量的(Mn,Fe) 5Si3第二相,空间群为P63/mcm.样品的居里温度都在室温附近,在278 ~296 K之间变化,不同热处理工艺对化合物的居里温度具有一定的影响.经过淬火处理的化合物存在较小的热滞和较大的等温磁熵变,两种化合物的热滞都由自然冷却处理时的5K降低到淬火处理时的3K.当Si的含量分别为0.56和0.57时,与经过自然冷却处理的化合物相比,经过淬火处理的化合物的最大磁熵变分别提升了33%和20%.在经过淬火处理的Mn1.35Fe0.65P0.44Si0.56化合物磁熵变最大,磁熵变的最大值为4.3J·kg-1·K-1.经过自然冷却处理的Mn1.35 Fe0.65P0.44 Si0.56化合物的最大绝热温变为1.2K.低成本的原料、较小的热滞、理想的制冷温区和较大的磁热效应使得Mn1.35 Fe0.65P1-xSix这一系列化合物在室温磁致冷方面有应用前景.  相似文献   

13.
金属Ce替代LaNi4.5Al0.5合金中的La用以提高金属吸/放氢热力学性能。通过研究合金La1-xCexNi4.5Al0.5(x=0~0.4)的相结构、储氢热力学以及吸/放氢动力学发现,所制备的合金主相为六方晶系LaNi5相;随着Ce替代量的增加(x=0~0.4),合金晶体结构中a轴呈现减小的趋势、c轴及各向异性(c/a)呈现出先增大后减小再增大的趋势;储氢性能测试表明,随着Ce替代量的增加,合金的吸/放氢平台压升高,最大储氢量减小;合金吸/放氢反应热优化程度与各向异性(c/a)呈现出相同趋势,当x=0.2时,合金吸放氢反应焓变分别降低至26.33 kJ/mol和24.30 kJ/mol。  相似文献   

14.
将La(Fe11.2Co0.7Si1.1)B0.25铸锭在氩气保护中制成小于1 mm的颗粒,在真空行星球磨机中将其分别球磨1 h、1.5 h、2 h;采用SPS(放电等离子烧结技术)烧结成合金,在1070℃下进行1 h热处理;采用XRD及SEM分析了样品的组织结构,并用VSM测量了样品的磁热效应。结果表明,随球磨时间的增加,粉末烧结样品居里温度逐渐降低,而绝热温变和等温磁熵变逐渐增加。  相似文献   

15.
采用X射线衍射和磁性测量等手段研究了金属间化合物La0.85 Ce0.15Fe11.4Si1.6的结构和磁热效应.结果表明,该化合物在211K附近经历了从铁磁到顺磁的二级相变.当外加磁场从OT增加到1.5T时.磁熵变为4.98J/kg·K.通过直接测量的方法得到了La0.85 Ce0.15Fe11.4Si1.6化合物在211K的1.0T~0T退磁场的绝热温变为1.1K.大的熵变值和绝热温变表明La0.85 Ce0.15Fe11.4Si1.6化合物很有潜力作为相应温区的磁制冷材料.  相似文献   

16.
粉末冶金法制备La(Fe11.05Co0.85Si1.1)B0.25化合物的磁热效应   总被引:2,自引:1,他引:1  
用非自耗电弧炉熔炼制备了La(Fe<,11.05>Co<,0.85>Si<,1.1>)B<,0.25>铸锭,并将该铸锭在氩气保护中球磨制粉,采用SPS(放电等离子烧结技术SparkPlasma Sintering)将该粉制成La(Fe<,11.05>Co<,0.85>Si<,1.1>)B<,0.25>合金,在高温(1070℃)下对其进行20 h热处理;空冷之后用XRD及SEM检测了铸锭热处理样品、SPS烧结样品及SPS热处理后样品的相及组织结构,利用VSM和磁热效应直接测量仪测量了这3种状态下合金的等温磁熵变和绝热温变.结果表明,铸锭合金的基相组织结构中晶粒大小规则较均匀,晶界清晰明显,在0~1.5 T的变化磁场下测得其等温磁熵变达到-5.22 J·(kg·K)<'-1>-,绝热温变也达到2.3 K,而采用SPS技术制得的样品的基相组织结构中没有明显晶界且夹杂较多,其等温磁熵变为-3.90 J·(kg·K)<'-1>,绝热温变为1.9 K(0~1.5 T);经过热处理的SPS样品基相组织结构中,有少量晶界形成,但晶粒大小不规则,测得其等温磁熵变为-3.72 J·(kg·K)<'-1>,绝热温变为1.5 K(0~1.5 T);与铸锭相比较,SPS技术制得的合金样品和经过高温热处理之后的SPS样品的绝热温变值和等温熵磁变值均降低,同比之下这两种样品较铸锭样品的居里点和半峰宽却发生了改变,均显著提高;可以看出采用SPS技术制备的室温磁制冷材料La(Fe<,11.05>Co<,0.85>Si<,1.1>)B<,0.25>能够在较宽的温度范围内制冷,但其磁热效应却相对降低.  相似文献   

17.
通过熔炼炉反复熔炼,然后放入流动氩气退火炉中在1363 K下退火100 h后自由冷却至室温,饱和吸氢得到母合金La_(0.8)Ce_(0.2)Fe_(11.6-x)Mn_xSi_(1.4)H_y(x=0.15,0.2)。最后对其进行等质量塑性粘结得到复合物。XRD相图结果表明母合金的主相均为Na Zn13型立方结构(空间点群为Fm-3c)。由热磁曲线和磁熵变曲线可以明显看出,复合物的温变区间与两母合金相比有所增大,并且在0~1.5 T磁场下其熵变值依然比Gd的要高,最高约为4.05 J/(kg·K)。粘结得到的复合物磁熵变曲线的半峰宽也有所增加。复合物的RCP(S)值与两母合金相比相差不大,而制冷温变区间有所增大。抗压强度测量结果表明粘结复合物具有较好的机械性能,有利于在磁制冷机中应用。  相似文献   

18.
研究了球磨添加CeO2对La2Mg17-50%(质量分数,下同)Ni复合合金的相结构和储氢性能的影响,并对合金的形貌和吸放氢性能进行了检测。XRD结果表明,球磨加入CeO2后,在La2Mg17-50%Ni合金中除了Mg2Ni和Ni相外,产生Ce Mg12相。SEM形貌图清晰地看见CeO2附在La2Mg17-50%Ni合金表面上呈白色小颗粒。吸氢动力学性能表明,加入CeO2后,使La2Mg17-50%Ni合金的最大吸氢量从3.298%增加到3.594%。添加CeO2后合金的最佳饱和吸氢温度降为200℃(3 MPa),且吸氢动力学性能提高至1 min内的吸氢量达到3.382%,是其最大吸氢量的94%。然而,CeO2在放氢过程中的积极作用并不明显。  相似文献   

19.
《稀土》2015,(1)
NaZn13型晶体结构的La(Fe,Si)13化合物由于具有原料价格低廉、磁热效应巨大、环保等优点而备受关注,已经成为国际上公认的最有潜力的室温磁制冷材料之一。本文系统介绍了La(Fe,Si)13化合物的结构和磁热性能,阐述了吸氢、吸氮,稀土元素、Co、B、C、Ca等替代元素对该系列化合物结构和磁热性能的影响,评述了最新的La(Fe,Si)13化合物的制备和加工工艺,最后展望了La(Fe,Si)13化合物作为磁制冷材料的发展趋势。  相似文献   

20.
LaFe11.2Co0.7Si1.1Bx合金在室温区的大磁热效应   总被引:2,自引:0,他引:2  
从室温磁制冷目的出发,用工业纯原料制备了具有NaZn13型结构的稀土铁基化合物LaFe11.2Co0.7Si1.1Bx(x=0,0.1,0.2,0.25,0.3,0.4,0.5),并对其磁热效应进行了研究.实验结果表明,LaFe11.2Co0.7Si1.1Bx合金在室温区具有大磁热效应,在x=0.2时,磁熵变|ΔSm|的峰值位于居里温度TC=270K处,1.5T外磁场下达到7.3J/kg·K,直接测量绝热温变ΔTad达到2.7K;B元素作为置换原子和间隙原子进入NaZn13相,显著提高了合金的磁熵变和居里温度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号