首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The effect of additives on Pt-ZSM-5 catalysts was studied for the selective NO reduction by H2 in the presence of excess O2 (NO–H2–O2 reaction) at 100 °C. The reaction of NO in a stream of 0.08% NO, 0.28% H2, 10% O2, and He balance yielded N2 with less than 10% selectivity, which could not be increased by changing Pt loading or H2 concentration in the gas feed. Co-impregnation of NaHCO3 and Pt onto ZSM-5 decreased the BET surface area and the Pt dispersion. Nevertheless, the Na-loaded catalyst (Na-Pt-ZSM-5) exhibited the higher NOx conversion (>90%) and the N2 selectivity (ca. 50%). Such a high catalytic activity even at high Na loadings (≥10 wt.%) is completely contrast to other Na-added Pt catalyst systems reported so far. Further improvement of N2 selectivity was attained by the post-impregnation of NaHCO3 onto Pt-ZSM-5. In situ DRIFT measurements suggested that the addition of Na promotes the adsorption of NO as NO2-type species, which would play a role of an intermediate to yield N2. The introduction of Lewis base to the acidic supports including ZSM-5 would be applied to the catalyst design for selective NO–H2–O2 reaction at low temperatures.  相似文献   

2.
CeO2 and CeReOx_y catalysts are prepared by the calcination at different temperatures (y = 500–1000 °C) and having a different composition (Re = La3+ or Pr3+/4+, 0–90 wt.%). The catalysts are characterised by XRD, H2-TPR, Raman, and BET surface area. The soot oxidation is studied with O2 and NO + O2 in the tight and loose contact conditions, respectively. CeO2 sinters between 800–900 °C due to a grain growth, leading to an increased crystallite size and a decreased BET surface area. La3+ or Pr3+/4+ hinders the grain growth of CeO2 and, thereby, improving the surface catalytic properties. Using O2 as an oxidant, an improved soot oxidation is observed over CeLaOx_y and CePrOx_y in the whole dopant weight loading and calcination temperature range studied, compared with CeO2. Using NO + O2, the soot conversion decreased over CeLaOx_y catalysts calcined below 800 °C compared with the soot oxidation over CeO2_y. CePrOx_y, on the other hand, showed a superior soot oxidation activity in the whole composition and calcination temperature range using NO + O2. The improvement in the soot oxidation activity over the various catalysts with O2 can be explained based on an improvement in the external surface area. The superior soot oxidation activity of CePrOx_y with NO + O2 is explained by the changes in the redox properties of the catalyst as well as surface area. CePrOx_y, having 50 wt.% of dopant, is found to be the best catalyst due to synergism between cerium and praseodymium compared to pure components. NO into NO2 oxidation activity, that determines soot oxidation activity, is improved over all CePrOx catalysts.  相似文献   

3.
A series of SiO2-supported MoO3, V2O5, and Pt catalysts were prepared for the study of model soot oxidation with simulated diesel exhaust gas. Composite samples of Pt with the metal oxides demonstrated higher oxidation activities than the single-component SiO2-supported MoO3, V2O5 or Pt catalysts in the absence of SO2 in the reactant gas. Based on the effects of NO2 on carbon oxidation, a synergistic reaction mechanism was suggested to explain the effects of combining Pt with the oxides: Pt catalyzes the oxidation of NO with gas phase O2 to NO2, while MoO3 and V2O5 catalyze the oxidation of carbon with NO2. Finally, the effects of SO2 on the carbon oxidation reaction were examined and discussed.  相似文献   

4.
The NO-H2-O2 reaction was studied over supported bimetallic catalysts, Pt-Mo and Pt-W, which were prepared by coexchange of hydrotalcite-like Mg-Al double layered hydroxides by Pt(NO2)42−, MoO42−, and/or WO42− and subsequent heating at 600 °C in H2. The Pt–Mo interaction could obviously be seen when the catalyst after reduction treatment was exposed to a mixture of NO and H2 in the absence of O2. The Pt-HT catalyst showed the almost complete NO conversion at 70 °C, whereas the Pt-Mo-HT showed a negligible conversion. Upon exposure to O2, however, Pt-Mo-HT exhibited the NO conversion at the lowest temperature of ≥30 °C, compared to ≥60 °C required for Pt-HT. EXAFS/XANES, XPS and IR results suggested that the role of Mo is very sensitive to the oxidation state, i.e., oxidized Mo species residing in Pt particles are postulated to retard the oxidative adsorption of NO as NO3 and promote the catalytic conversion of NO to N2O at low temperatures.  相似文献   

5.
A previous investigation of the chlorobenzene combustion activity of VOx/TiO2, VOx–WOx/TiO2 and VOx–MoOx/TiO2 catalysts in the presence of NO pointed out the activation effect of NO. The suggested three-step mechanism based on catalytic performances data only was: (1) chlorobenzene is oxidized on the surface of the VOx phase (as described by Mars–van Krevelen), (2) NO gets oxidized to NO2, mainly on WOx and MoOx, and (3) the in situ produced NO2 assists O2 in the reoxidation of the VOx phase thus speeding up the oxidation step of the Mars–van Krevelen mechanism. The latter effect macroscopically corresponds to the observed increase of chlorobenzene conversion. This contribution aims at validating this hypothetical mechanism by pointing out the favourable occurrence of an oxidation of NO to NO2 on the WOx and MoOx phases and by pointing out the higher efficiency of NO2 than O2 to reoxidize the reduced VOx sites. In addition, the present contribution clearly demonstrates that, in the absence of NO, the chlorobenzene total oxidation occurred following the Mars–van Krevelen mechanism. Moreover, a thorough characterization of the oxidation state of the vanadium proving that the improvement of the catalyst activity brought by the simultaneous presence of NO and O2 is linked to the stronger reoxidation of the VOx active phase. Furthermore, plotting all the catalytic activity data versus the mean vanadium oxidation level clearly depicts, for the first time, the strong dependence between them. Under a mean vanadium oxidation level of 4.82 the catalyst is inactive while above 4.87 the activity is stabilized at a high level of conversion independent of the vanadium oxidation level.  相似文献   

6.
Pt supported on CeO2 and 10 wt.% La3+-doped CeO2 catalysts have been prepared, characterised and tested for soot oxidation by O2 in TGA. The reaction mechanism has been studied in a TAP reactor with labelled O2. Isotopic oxygen exchange between molecular O2 and ‘O’ on the support/catalyst was observed and soot oxidation is being carried out by lattice oxygen. TAP studies further show that Pt improves O2 adsorption and, therefore, 5 wt.% Pt-containing catalysts are more active for soot oxidation than the counterpart supports. In addition, CeO2 doping by La3+ leads to an improved support, since La3+ stabilises the structure of CeO2 when calcined at high temperature (1000 °C) and minimises sintering. In addition, La3+ improves the Ce4+/Ce3+ reduction as deduced from H2-TPR experiments and favours oxygen mobility into the lattice. A synergetic effect of Pt and La3+ is observed, Pt-containing La3+-doped CeO2 being the most active catalyst for soot oxidation by O2 among the samples studied.  相似文献   

7.
Ceria (CeO2) and rare-earth modified ceria (CeReOx with Re = La3+, Pr3+/4+, Sm3+, Y3+) supports and Pt impregnated supports are studied for the soot oxidation under a loose contact with the catalyst with the feed gas, containing NO + O2. The catalysts are characterised by XRD, H2-TPR, DRIFT and Raman spectroscopy. Among the single component oxides, CeO2 is significantly more active compared with the other lanthanide oxides used in this study. Doping CeO2 with Pr3+/4+ and La3+ improved, however, the soot oxidation activity of the resulting solid solutions. This improvement is correlated with the surface area in the case of CeLaOx and to the surface area and redox properties of CePrOx catalyst. The NO conversion to NO2 over these catalysts is responsible for the soot oxidation activity. If the activity per unit surface area is compared CePrOx is the most active one. This indicates that though La3+ can stabilise the surface area of the catalyst in fact it decreases the soot oxidation activity of Ce4+. The lattice oxygen participates in NO conversion to NO2 and the rate of this lattice oxygen transfer is much faster on CePrOx. In general, the improvement of the soot oxidation is observed over the Pt impregnated CeO2 and CeReOx catalysts, and can be correlated to the presence of Pt°. The surface reduction of the supports in the presence of Pt occurred below 100 °C. The surface redox properties of the support in the Pt catalysts do not have a significant role in the NO to NO2 conversion. In spite of the lower surface area, the Pt/CeYOx and Pt/CeO2 catalysts are found to be more active due to larger Pt crystal sizes. The presence of Pt also improved the CO conversion to CO2 over these catalysts. The activation energy for the soot oxidation with NO + O2 is found to be around 50 kJ/mol.  相似文献   

8.
MnOx–CeO2 mixed oxides with a Mn/(Mn + Ce) molar ratios of 0–1 were prepared by a modified coprecipitation method and investigated for the complete oxidation of formaldehyde. The MnOx–CeO2 with Mn/(Mn + Ce) molar ratio of 0.5 exhibited the highest catalytic activity among the MnOx–CeO2 mixed oxides. Structure analysis by X-ray powder diffraction and temperature-programmed reduction of hydrogen revealed that the formation of MnOx–CeO2 solid solution greatly improved the low-temperature reducibility, resulting in a higher catalytic activity for the oxidation of formaldehyde. Promoting effect of Pt on the MnOx–CeO2 mixed oxide indicated that both the Pt precursors and the reduction temperature greatly affected the catalytic performance. Pt/MnOx–CeO2 catalyst prepared from chlorine-free precursor showed extremely high activity and stability after pretreatment with hydrogen at 473 K. 100% conversion of formaldehyde was achieved at ambient temperature and no deactivation was observed for 120 h time-on-stream. The promoting effect of Pt was ascribed to enhance the effective activation of oxygen molecule on the MnOx–CeO2 support.  相似文献   

9.
The selective catalytic reduction of NOx by methane on noble metal-loaded sulfated zirconia (SZ) catalysts was studied. Ru, Rh, Pd, Ag, Ir, Pt, and Au-loaded sulfated zirconia catalysts were compared with the intact sulfated zirconia. For the NO–CH4–O2 reaction, Ru, Rh, Pd, Ir, and Pt showed promotion effect on NOx reduction, while for the NO2–CH4–O2 reaction, only Rh and Pd showed promotion effect. Over intact and Rh, Pd, Ag, and Au-loaded sulfated zirconia, NOx conversion in NO2–CH4–O2 reaction was significantly higher than that in NO–CH4–O2 reaction, while clear difference was not observed over Ru, Ir, and Pt-loaded sulfated zirconia. Comparison of [NO2]/([NO]+[NO2]) in the effluent gases in NO–O2 and NO2–O2 reactions showed that Ru, Ir, and Pt has high activity for NO oxidation under the reaction conditions. These facts suggest that effects of these metals toward NOx reduction by methane can be categorized into the following three groups: (i) low activity for NO oxidation to NO2, and high activity for NO2 reduction to N2 (Pd, Rh); (ii) high activity for NO oxidation to NO2, and low activity for NO2 reduction to N2 (Ru, Ir, Pt); (iii) low activity for both reactions (Ag, Au). To confirm these suggestions, combination of these metals were investigated on binary or physically-mixed catalysts. The combination of Pd or Rh with Pt or Ru gave high activity for the selective reduction of NOx by methane.  相似文献   

10.
The heterogeneous reactivity of NOx and SO2 with carbon has been investigated with FT-IR spectroscopy. The interaction between NO and SO2 on carbon surface have been studied in the presence and in the absence of oxygen. Thermal stabilities of surface structures, formed as a result of NOx and SO2 chemisorption have been determined by means of FT-IR spectroscopy. During the reaction of NO/O2 mixture with carbon the surface species, including C–NO2, C–ONO, C–NCO and anhydride structures are formed. It has been found that SO2 retards the oxidation reaction of carbon by oxygen. The oxidation of SO2 on carbon was found to be greatly enhanced by the presence of NO + O2 mixture. The adsorption capacity of cellulose based carbon, catalytic NOx decomposition and TPD was studied using a fixed bed flow reactor.  相似文献   

11.
Ag-based catalysts supported on various metal oxides, Al2O3, TiO2, and TiO2–Al2O3, were prepared by the sol–gel method. The effect of SO2 on catalytic activity was investigated for NO reduction with propene under lean burn condition. The results showed the catalytic activities were greatly enhanced on Ag/TiO2–Al2O3 in comparison to Ag/Al2O3 and Ag/TiO2, especially in the low temperature region. Application of different characterization techniques revealed that the activity enhancement was correlated with the properties of the support material. Silver was highly dispersed over the amorphous system of TiO2–Al2O3. NO3 rather than NO2 or NOx reacted with the carboxylate species to form CN or NCO. NO2 was the predominant desorption species in the temperature programmed desorption (TPD) of NO on Ag/TiO2–Al2O3. More amount of formate (HCOO) and CN were generated on the Ag/TiO2–Al2O3 catalyst than the Ag/Al2O3 catalyst, due to an increased number of Lewis acid sites. Sulfate species, resulted from SO2 oxidation, played dual roles on catalytic activity. On aged samples, the slow decomposition of accumulated sulfate species on catalyst surface led to poor NO conversion due to the blockage of these species on active sites. On the other hand, catalytic activity was greatly enhanced in the low temperature region because of the enhanced intensity of Lewis acid site caused by the adsorbed sulfate species. The rate of sulfate accumulation on the Ag/TiO2–Al2O3 system was relatively slow. As a consequence, the system showed superior capability for selective adsorption of NO and SO2 toleration to the Ag/Al2O3 catalyst.  相似文献   

12.
This study addresses the catalytic reaction of NOx and soot into N2 and CO2 under O2-rich conditions. To elucidate the mechanism of the soot/NOx/O2 reaction and particularly the role of the catalyst -Fe2O3 is used as model sample. Furthermore, a series of examinations is also made with pure soot for reference purposes. Temperature programmed oxidation and transient experiments in which the soot/O2 and soot/NO reaction are temporally separated show that the NO reduction occurs on the soot surface without direct participation of the Fe2O3 catalyst. The first reaction step is the formation of CC(O) groups that is mainly associated with the attack of oxygen on the soot surface. The decomposition of these complexes leads to active carbon sites on which NO is adsorbed. Furthermore, the oxidation of soot by oxygen provides a specific configuration of active carbon sites with suitable atomic orbital orientation that enables the chemisorption and dissociation of NO as well as the recombination of two adjacent N atoms to evolve N2. Moreover, carbothermal reaction, high resolution transmission electron microscopy and isotopic studies result in a mechanistic model that describes the role of the Fe2O3 catalyst. This model includes the dissociative adsorption of O2 on the iron oxide, surface migration of the oxygen to the contact points of soot and catalyst and then final transfer of O to the soot. Moreover, our experimental data suggest that the contact between both solids is maintained up to high conversion levels thus resulting in continuous oxygen transfer from catalyst to soot. As no coordinative interaction of soot and Fe2O3 catalyst is evidenced by diffuse reflectance infrared Fourier transform spectroscopy a van der Waals type interaction is supposed.  相似文献   

13.
The role of two catalysts Pt/Al2O3 and Ru/NaY on the oxidation of carbon by NO2 was investigated in the temperature range 300–400 °C. In the case of Pt/Al2O3 no significant catalytic effect on the carbon oxidation rate is observed although decomposition of NO2 takes place on the noble metal and leads to the formation of NO. This result suggests that the amount of the oxygen atoms transferred from the metallic surface sites to the carbon surface to form C(O) complex is negligible. In contrast, in presence of Ru/NaY the oxidation rate of carbon by NO2 is markedly increased. Hence, a significant part of the formed O through catalytic decomposition of NO2 on Ru surface sites is transferred to the carbon surface leading to a larger amount of C(O) complexes on the carbon surface. Thus, the ruthenium surface is a generator of active oxygen species that are spilled over on the carbon surface at 350 °C.  相似文献   

14.
The activity of several catalysts are studied in the soot combustion reaction using air and NO/air as oxidising agents. Over Al2O3-supported catalysts NO(g) is a promoter for the combustion reaction with the extent of promotion depending on the Na loading. Over these catalysts SO42− poisons this promotion by preventing NO oxidation through a site blocking mechanism. SiO2 is unable to adsorb NO or catalyse its oxidation and over SiO2-supported Na catalysts NO(g) inhibits the combustion reaction. This is ascribed to a competition between NO and O2. Over Fe-ZSM-5 catalysts the presence of a NOx trapping component does not increase the combustion of soot in the presence of NO(g) and it is proposed that this previously reported effect is only seen under continuous NOx trap operation as NO2 is periodically released during regeneration and thus available for soot combustion. Experiments during which the [NO](g) is varied show that CO, rather than an adsorbed carbonyl-like intermediate, is formed upon reaction between NO2 (the proposed oxygen carrier) and soot.  相似文献   

15.
The effect of oxygen concentration on the pulse and steady-state selective catalytic reduction (SCR) of NO with C3H6 over CuO/γ-Al2O3 has been studied by infrared spectroscopy (IR) coupled with mass spectroscopy studies. IR studies revealed that the pulse SCR occurred via (i) the oxidation of Cu0/Cu+ to Cu2+ by NO and O2, (ii) the co-adsorption of NO/NO2/O2 to produce Cu2+(NO3)2, and (iii) the reaction of Cu2+(NO3)2 with C3H6 to produce N2, CO2, and H2O. Increasing the O2/NO ratio from 25.0 to 83.4 promotes the formation of NO2 from gas phase oxidation of NO, resulting in a reactant mixture of NO/NO2/O2. This reactant mixture allows the formation of Cu2+(NO3)2 and its reaction with the C3H6 to occur at a higher rate with a higher selectivity toward N2 than the low O2/NO flow. Both the high and low O2/NO steady-state SCR reactions follow the same pathway, proceeding via adsorbed C3H7---NO2, C3H7---ONO, CH3COO, Cu0---CN, and Cu+---NCO intermediates toward N2, CO2, and H2O products. High O2 concentration in the high O2/NO SCR accelerates both the formation and destruction of adsorbates, resulting in their intensities similar to the low O2/NO SCR at 523–698 K. High O2 concentration in the reactant mixture resulted in a higher rate of destruction of the intermediates than low O2 concentration at temperatures above 723 K.  相似文献   

16.
Martyn V. Twigg   《Catalysis Today》2006,117(4):407-418
Catalytic oxidation was initially associated with the early development of catalysis and it subsequently became a part of many industrial processes, so it is not surprising it was used to remove hydrocarbons and CO when it became necessary to control these emissions from cars. Later NOx was reduced in a process involving reduction over a Pt/Rh catalyst followed by air injection in front of a Pt-based oxidation catalyst. If over-reduction of NO to NH3 took place, or if H2S was produced, it was important these undesirable species were converted to NOx and SOx in the catalytic oxidation stage. When exhaust gas composition could be kept stoichiometric hydrocarbons, CO and NOx were simultaneously converted over a single Pt/Rh three-way catalyst (TWC). With modern TWCs car tailpipe emissions can be exceptionally low. NO is not catalytically dissociated to O2 and N2 in the presence of O2, it can only be reduced to N2. Its control from lean-burn gasoline engines involves catalytic oxidation to NO2 and thence nitrate that is stored and periodically reduced to N2 by exhaust gas enrichment. This method is being modified for diesel engines. These engines produce soot, and filtration is being introduced to remove it. The exhaust temperature of heavy-duty diesels is sufficient (250–400 °C) for NO to be catalytically oxidised to NO2 over an upstream platinum catalyst that smoothly oxidises soot in the filter. The exhaust gas temperature of passenger car diesels is too low for this to take place all of the time, so trapped soot is periodically burnt in O2 above 550 °C. Catalytic oxidation of higher than normal amounts of hydrocarbon and CO over an upstream catalyst is used to give sufficient temperature for soot combustion with O2 to take place.  相似文献   

17.
Reaction mechanism of the reduction of nitrogen monoxide by methane in an oxygen excess atmosphere (NO–CH4–O2 reaction) catalyzed by Pd/H-ZSM-5 has been studied at 623–703 K in the absence of water vapor, in comparison with the mechanism for Co-ZSM-5. Kinetic isotope effect for the N2 formation in NO–CH4–O2 vs. NO–CD4–O2 reactions was 1.65 at 673 K and decreased with a decrease in the reaction temperature. In addition, H–D isotopic exchange took place significantly in NO–(CH4+CD4)–O2 reaction. These results are in marked contrast with the case of Co-ZSM-5, for which the C–H dissociation of methane is the only rate-determining step, and show that the C–H dissociation is slow but not the only rate-determining step in the case of Pd/H-ZSM-5.

A reaction scheme was proposed, in which the relative rates of the three steps ((i)–(iii) below) vary depending on the reaction conditions.

Further, in contrast to Co-ZSM-5, NOx–CH4–O2 reaction was much slower than CH4–O2 reaction for Pd/H-ZSM-5; the presence of NOx retards the reaction of CH4 over the latter catalyst, while it accelerates the reaction over the former. It is suggested that CH4 is activated directly by the Pd atoms in the case of Pd/H-ZSM-5, but by NO2 strongly adsorbed on Co ion for Co-ZSM-5. The reaction order of the NO–CH4–O2 reaction with respect to NO pressure was consistent with this mechanism; 1.05 for Pd/H-ZSM-5 and 0.11 for Co-ZSM-5.  相似文献   

18.
Co3O4–CeO2 type mixed oxide catalyst compositions have been prepared by using co-precipitation method and, their catalytic activity towards diesel particulate matter (PM)/carbon oxidation has been evaluated under both loose and tight contact conditions. These catalysts show excellent catalytic activity for PM/carbon oxidation, despite their low surface area. The activation energy observed for non-catalyzed and catalyzed reactions are 163 kJ/mol and 140 kJ/mol, respectively, which also confirm the catalytic activity of catalyst for carbon/soot oxidation. The promotional effects of an optimum amount of cobalt oxide incorporation in ceria and presence of a small amount of potassium appears to be responsible for the excellent soot oxidation activity of this mixed oxide type material. The catalytic materials show good thermal stability, while their low cost will also add to their potential for practical applications.  相似文献   

19.
The current work is devoted to study of CO interaction with PdO/Al2O3–(Cex–Zr1−x)O2 catalysts. Ceria–zirconia–alumina supports with different Ce/Zr ratio were prepared by sol–gel technique. The FT-IR characterization of CO adsorbed at −120 and 25 °C on oxidized and reduced samples revealed that Ce/Zr ratio modifies the surface properties of support and oxidation state of palladium. The catalyst with Ce/Zr molar ratio 0.5/0.5 was characterized with the highest ability to stabilize palladium in oxide state and the highest activity to oxidize CO. Redox treatment of catalysts improves their catalytic activity.  相似文献   

20.
Ni catalysts supported on γ-Al2O3, CeO2 and CeO2–Al2O3 systems were tested for catalytic CO2 reforming of methane into synthesis gas. Ni/CeO2–Al2O3 catalysts showed much better catalytic performance than either CeO2- or γ-Al2O3-supported Ni catalysts. CeO2 as a support for Ni catalysts produced a strong metal–support interaction (SMSI), which reduced the catalytic activity and carbon deposition. However, CeO2 had positive effect on catalytic activity, stability, and carbon suppression when used as a promoter in Ni/γ-Al2O3 catalysts for this reaction. A weight loading of 1–5 wt% CeO2 was found to be the optimum. Ni catalysts with CeO2 promoters reduced the chemical interaction between nickel and support, resulting in an increase in reducibility and stronger dispersion of nickel. The stability and less coking on CeO2-promoted catalysts are attributed to the oxidative properties of CeO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号