首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quality‐of‐service (QoS) is a key problem of today's IP networks. Many frameworks (IntServ, DiffServ, MPLS etc.) have been proposed to provide service differentiation in the Internet. At the same time, the Internet is becoming more and more heterogeneous due to the recent explosion of wireless networks. In wireless environments, bandwidth is scarce and channel conditions are time‐varying and sometimes highly lossy. Many previous research works show that what works well in a wired network cannot be directly applied in the wireless environment. Although IEEE 802.11 wireless LAN (WLAN) is the most widely used IEEE 802.11 wireless LAN (WLAN) standard today, it cannot provide QoS support for the increasing number of multimedia applications. Thus, a large number of 802.11 QoS enhancement schemes have been proposed, each one focusing on a particular mode. This paper summarizes all these schemes and presents a survey of current research activities. First, we analyze the QoS limitations of IEEE 802.11 wireless MAC layers. Then, different QoS enhancement techniques proposed for 802.11 WLAN are described and classified along with their advantages/drawbacks. Finally, the upcoming IEEE 802.11e QoS enhancement standard is introduced and studied in detail. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
Niyato  D. Hossain  E. 《IEEE network》2007,21(3):6-14
One of the promising applications of IEEE 802.16 (WiMAX)-based wireless mesh/relay networks is to provide infrastructure/backhaul support for IEEE 802.11-based mobile hotspots. In this article we present an architecture for integrating IEEE 802.11 WLANs with IEEE 802.16-based multihop wireless mesh infrastructure to relay WLAN traffic to the Internet. The major research issues in this integrated architecture are outlined and related work is reviewed. A game-theoretic model is developed for radio resource management in this integrated network architecture. In particular, a multiplayer bargaining game formulation is used for fair bandwidth allocation and optimal admission control of different types of connections (e.g., WLAN connections, relay connections, and connections from standalone subscriber stations) in an IEEE 802.16 base station/mesh router. Both connection-level and inconnection-level performances for this bandwidth management and admission control framework are presented  相似文献   

3.
Providing end-to-end parameterized QoS is desirable for many network applications and has received a lot of attention in recent years. However, it remains a challenge, especially over hybrid networks involving both wired networks and wireless access segments (such as IEEE 802.11 Wireless Local Area Networks (WLANs)). The difficulty in achieving such QoS arises mainly because wireless segments often constitute “gaps" in terms of resource guarantee, due to the lack of efficient resource scheduling and management ability over shared wireless media, as well as the lack of an appropriate QoS signaling interface to seamlessly embed these wireless segments into an end-to-end QoS signaling system. In this paper, we consider the scenario where an IEEE 802.11 wireless node wishes to make an end-to-end resource reservation to a remote wired Internet node and vice versa. We propose Wireless Subnet Bandwidth Manager (Wireless SBM), an extension of SBM protocol to WLANs, to provide seamless end-to-end resource reservations. Wireless SBM utilizes the enhanced resource management ability provided by Hybrid Coordination Function (introduced in the upcoming IEEE 802.11e standard) to provide parameterized resource reservation and admission control.  相似文献   

4.
The evolution of the Internet has been mainly promoted in recent years by the emergence and proliferation of wireless access networks towards a global ambient and pervasive network accessed from mobile devices. These new access networks have introduced new MAC layers independently of the legacy “wire-oriented” protocols that are still at the heart of the protocol stacks of the end systems. This principle of isolation and independence between layers advocated by the OSI model has its drawbacks of maladjustment between new access methods and higher-level protocols built on the assumption of a wired Internet. In this paper, we introduce and deliver solutions for several pathological communication behaviors resulting from the maladjustment between WLAN MAC and higher layer standard protocols such as TCP/IP and UDP/IP. Specially, based on an efficient analytical model for WLANs bandwidth estimation, we address in this paper the two following issues: (1) Performance degradation due to the lack of flow control between the MAC and upper layer resulting in potential MAC buffer overflow; (2) Unfair bandwidth share issues between various type of flows. We show how these syndromes can be efficiently solved from neutral “cross layer” interactions which entail no changes in the considered protocols and standards.  相似文献   

5.
The existing WLAN architecture does not have the capabilities to leverage the wired and wireless broadband-accessed network control for the Inter-WLAN mobility. This paper presents a broadband-facilitated inter-WLAN mobility system architecture including its realization with the wired and wireless broadband-accessed network control for the WLAN mobility management. The proposed broadband-based inter-WLAN mobility management concept has changed the notion of the traditional WLAN mobility. Secondly, an implementation of the distribution system with broadband-accessed central network control for the IEEE 802.11 inter-WLAN mobility along with its management protocol is presented. In addition, this paper provides the modification to the enhanced IAPP protocol signaling messaging required for the broadband-facilitated WLAN mobility management. Finally, simulation experimental results for the proposed inter-WLAN communications architecture’s performance vs. WLAN mobility management performance employing standard and optimized MIP are presented. We believe that the proposed architecture would greatly enhance the Inter-WLAN IP mobility performance. This paper serves as a foundation work for future research in inter-WLAN mobility management using broadband, wired and wireless that integrates high-speed wide area network and WLANs.  相似文献   

6.
In the past decade, there has been a huge proliferation of wireless local area networks (WLANs) based on the IEEE 802.11 WLAN standard. As 802.11 connectivity becomes more ubiquitous, multihop communications will be increasingly used for access point range extension and coverage enhancement. In this paper, we present a design for an IEEE 802. 11 -based power saving access point (PSAP), intended for use in multihop battery and solar/battery powered applications. These types of APs have many practical applications and can be deployed very quickly and inexpensively to provide coverage enhancement in situations such as campuses, building complexes, and fast deployment scenarios. Unlike conventional wired access points, in this type of system, power saving on the AP itself is an important objective. A key design constraint is that the proposed PSAP be backward compatible to a wide range of IEEE 802.11 functionality and existing wired access points. In this paper, we introduce the protocols required to achieve this compatibility, show the constraints imposed by this restriction, and present performance results for the proposed system.  相似文献   

7.
The integration of wireless local area networks (WLANs) and third generation (3G) cellular networks has been recently a subject of great interest, mainly aimed at augmenting cellular networks with high‐rate data services by WLANs in hotspots. The complementary characteristics of 3G cellular networks and 802.11 WLANs are expected to offer the best of both technologies. On the other hand, the drastically different characteristics of both networks could be a serious obstacle to providing seamless mobility in the integrated WLAN and cellular networks. In particular, mobile users suffer from a drastic decrease in data rate after a vertical handoff from a WLAN to a 3G cellular network. However, current TCP congestion control cannot adapt to the change in the data rate after the vertical handoff, resulting in significant throughput degradation. Thus, we propose a novel TCP scheme to enhance the throughput when a vertical handoff occurs from a WLAN to a cellular network. For the proposed scheme, the throughput performance is investigated via analytic modeling and simulation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Wireless LAN technology has been shown to he a revolutionary development during the last decade. Recently popularized IEEE 802.11a/g-based products can support up to 54 Mb/s physical layer rate and provide wireless access to the Internet. However, in order to deal robustly with the unreliable wireless nature, the 802.11 medium access control protocol has a relatively large overhead and hence, the throughput performance is much worse than the underlying physical layer rate. Moreover, along with many emerging applications and services over WLANs, such as voice over WLAN and audio/video streaming, the demand lor faster and higher- capacity WLANs has been growing recently. In this article, we propose a new medium access control protocol for the next-generation high-speed WLANs. The proposed medium access control, called multi-user polling controlled channel access, is composed of two components: multi-layer frame aggregation, which performs aggregation at both the medium access control and the physical layers; and multi-user polling, used to reduce the contention overhead and in turn, achieve higher network utilization. Multi-user polling controlled channel access is compared with the 802.11e-enhanced distributed channel access medium access control. Highly enhanced medium access control efficiency can be achieved by applying multi-user polling controlled channel access. We show the improved medium access control performance in terms of the aggregate throughput of non-QoS Hows with relevant QoS requirements.  相似文献   

9.
Voice over Internet Protocol (VoIP) has been widely used by many mobile consumer devices in IEEE 802.11 wireless local area networks (WLAN) due to its low cost and convenience. However, delays of all VoIP flows dramatically increase when network capacity is approached. Additionally, unfair traffic distribution between downlink and uplink flows in WLANs impacts the perceived VoIP quality. This paper proposes an intelligent bandwidth management scheme for VoIP services (iVoIP) that improves bandwidth utilization and provides fair downlink–uplink channel access. iVoIP is a cross-layer solution which includes two components: (1) iVoIP-Admission Control, which protects the quality of existing flows and increases the utilization of wireless network resources; (2) iVoIP-Fairness scheme, which balances the channel access opportunity between access point (AP) and wireless stations. iVoIP-Admission Control limits the number of VoIP flows based on an estimation of VoIP capacity. iVoIP-Fairness implements a contention window adaptation scheme at AP which uses stereotypes and considers several major quality of service parameters to balance the network access of downlink and uplink flows, respectively. Extensive simulations and real tests have been performed, demonstrating that iVoIP has both very good VoIP capacity estimation and admission control results. Additionally, iVoIP improves the downlink/uplink fairness level in terms of throughput, delay, loss, and VoIP quality.  相似文献   

10.
This article addresses the problem of uncoordinated heterogeneous deployment of 802.11 wireless local area networks (WLANs). It is expected that such deployments by different WLAN owners and WiFi providers will become a challenging problem that limits the network performance and quality of service of wireless users. We present results of a real case study that show a need for coordination among WLAN devices in order to avoid current and future problems. We provide potential solution directions. A special focus is given to channel assignment and coordinated channel access problems. Our results show that a new paradigm for designing WLAN devices seems to be crucial. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Security protocol for IEEE 802.11 wireless local area network   总被引:1,自引:0,他引:1  
As Wireless Local Area Networks (WLANs) are rapidly deployed to expand the field of wireless products, the provision of authentication and privacy of the information transfer will be mandatory. These functions need to take into account the inherent limitations of the WLAN medium such as limited bandwidth, noisy wireless channel and limited computational power. Moreover, some of the IEEE 802.11 WLAN characteristics such as the use of a point coordinator and the polling based Point Coordination Function (PCF) have also to be considered in this design. In this paper, we introduce a security protocol for the IEEE 802.11 PCF that provides privacy and authentication, and is designed to reduce security overheads while taking into account the WLAN characteristics. We prove this protocol using the original and modified BAN logic.  相似文献   

12.
Several technical issues make commercial and large voice over wireless local area network (VoWLAN) services difficult to provide. The most challenging issue when voice over Internet Protocol (VoIP) services are ran over IEEE 802.11-based WLANs is the bandwidth inefficiency due to the considerable overhead associated with WLAN packet transmission. In this work, we propose a session-based quality-of-service management architecture (SQoSMA) to overcome the low number of VoIP calls in IEEE 802.11 Wireless LANs and the negative effect of new call addition when the WLAN reaches its capacity. The SQoSMA combines data and control planes to detect VoWLAN QoS degradations and performs either an adaptive audio codec switching or a call stopping to fix VoWLAN issues in a differentiated services manner. In addition, our solution deals with user sessions information, by considering user priority (from its agreement) to guarantee a certain level of its multimedia applications. Performance evaluation using a real test-bed shows that call codec change and call stopping techniques can easily assure high-priority calls with acceptable call blocking probability.  相似文献   

13.
干扰受限环境下蓝芽系统的性能及自适应跳频共存机制   总被引:1,自引:0,他引:1  
随着无线局域网(WLAN)的日益普及和无线个人局域网(WPAN)的飞速发展,由于共享同一频段而产生的系统间干扰不可避免。本文着重讨论基于IEEE802.1lb标准的WLAN对基于蓝芽(Bluetooth)的短距离无线通信系统的影响。在利用MATLAB和C 搭建的系统干扰模型的仿真平台上,实现了基于蓝芽物理层的自适应跳频(Adaptive Frequency Hopping-AFH)共存机制(Co—existence Mechanism)。仿真结果显示,通过简单的AFH信道选择模块,可以有效减轻WLAN对蓝芽的干扰影响。  相似文献   

14.
IEEE 802.11 wireless local area networks (WLANs) have reached an important stage and become a common technology for wireless access due to its low cost, ease of deployment, and mobility support. In parallel with the extensive growth of WLANs, the development of an efficient medium access control protocol that provides both high throughput performance for data traffic and quality of service support for real‐time applications has become a major focus in WLAN research. The IEEE 802.11 Distributed Coordination Functions (DCF/EDCA) provide contention‐based distributed channel access mechanisms for stations to share the wireless medium. However, performance of these mechanisms may drop dramatically because of high collision probabilities as the number of active stations increases. In this paper, we propose an adaptive collision‐free MAC adaptation. The proposed scheme prevents collisions and allows stations to enter the collision‐free state regardless of the traffic load (saturated or unsaturated) and the number of stations on the medium. Simulation results show that the proposed scheme dramatically enhances the overall throughput and supports quality of service for real‐time services over 802.11‐based WLANs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Services in interworking 3G and WLAN environments   总被引:3,自引:0,他引:3  
Interworking WLANs and 3G mobile networks are expected to provide ubiquitous wireless communications at high data rates and a large variety of services with variable bandwidth and QoS requirements, across a wide range of propagation environments and mobility conditions, using dual mode terminals. The interworking of the two networks is a major step toward a new generation of wireless networks in which other radio technologies are also be integrated. In this article we present possible architectures that enable the interworking of 3G and WLAN networks. We then address the capabilities of various terminal types and describe future services in the interworking environment. Finally, we present market forecasts on terminal and service demand growth.  相似文献   

16.
This paper studies the fading properties of the communication channel assumed in wireless local area networks (WLANs) and devises efficient channel‐aware protocols for the distributed coordination function (DCF) and the point coordination function (PCF), the two modes of communication defined in the IEEE standard for WLAN. Our simulations show that the proposed PCF protocol improves the channel capacity usage up to 14% and the proposed DCF protocol improves the channel capacity up to 90%, when compared with standard IEEE 802.11 implementations, depending on the loss rate and temporal characteristics of the wireless channel. The proposed protocols introduce minimum computational overhead. We also show that, compared with standard DCF protocol defined in IEEE 802.11, the proposed DCF protocol can lower the SNR requirements for a given packet error rate thus potentially extending the battery life of portable devices that use WLAN.. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
In recent years, there has been a growing demand in 3G data services, leading to deteriorating 3G service quality. Noting that Wireless Local Area Networks (WLANs) as well as 3G cellular networks are widely available today, WLANs could be effectively utilized to relieve the overload in the 3G networks. On the other hand, use of IEEE 802.11 WLAN Access Points (APs) has proliferated tremendously, resulting in a communication device inside a mobile vehicle to access the Internet. However, using Internet through APs in moving vehicles is challenging since WLAN APs have a short range and are typically not deployed to cover all roads. Several studies have investigated the performance of using intermittently available WLAN connectivity from moving vehicles for data transfers and predictive offloading in WLAN/3G networks. However, these works have not addressed mobility pattern from the viewpoint that drivers’ mobility is generally known to have a daily routine. Therefore, in this paper, we consider the user’s historical mobility to decide to offload data to WLAN instead of switching to 3G network. The user’s application usage pattern is also considered into predicting available WLANs. To evaluate the performance of our offloading algorithm, we analyze the prediction error and conduct simulations. The simulation results show that the proposed algorithm achieves shorter transmission time than the existing schemes that do not consider user’s mobility pattern by delivering more data to the WLANs.  相似文献   

18.
WLANs have become a ubiquitous networking technology deployed everywhere. Meanwhile. VoIP is one popular application and a viable alternative to traditional telephony systems due to its cost efficiency. VoIP over WLAN (VoWLAN) has been emerging as an infrastructure to provide low-cost wireless voice services. However, VoWLAN poses significant challenges due to the characteristics of contention-based protocols and wireless networks. In this article we propose two mechanisms to provide quality of service for variable bit rate VoIP in IEEE 802.11e contention-based channel access WLANs: access time-based admission control and access point dynamic access. Simulation results are conducted to study these schemes.  相似文献   

19.
The intense wireless LAN standardization and R&D activities worldwide, combines with the recent successful deployment of WLANs, provide prime evidence that WLAN technology will play a key role in the fourth generation of mobile data networks. In this context, there is a strong need to integrate WLANs with 3G mobile data networks and develop hybrid mobile data networks capable of ubiquitous data services and very high data rates in strategic locations. This article addresses this need by proposing and discussing some novel architectures able to provide internetworking between WLAN and 3G networks, and meet the requirements of the most common internetworking scenarios. These architectures can enable 3G subscribers to benefit from high-throughput IP connectivity in hotspots and also to attain service roaming across several radio access technologies, such as IEEE 802.11, HiperLan/2, ULTRAN, and GERAN.  相似文献   

20.
The Internet of Things (IoT) is the next big possibility and challenge for the future information networks. It makes the interaction between people and things more active and provides the connection among different existing networks. Ubiquitous short‐range wireless access and cognitive radio are key technologies for the IoT's realization. This paper deals with some problems in an integrated system of wireless local area network (WLAN) and cognitive radio — cognitive WLAN over fiber (CWLANoF). CWLANoF is a cost‐effective and efficient architecture that combines radio over fiber and cognitive radio technologies to provide centralized radio resource management and equal spectrum access in infrastructure‐based IEEE 802.11 WLANs. In this paper, a reinforcement learning approach is applied to implement dynamic channel selection in CWLANoF. The cognitive access points select the best channels among the industrial, scientific, and medical band for data packet transmission, given that the objective is to minimize external interference and acquire better network‐wide performance. The reinforcement learning method avoids solving complex optimization problems while being able to explore the states of a CWLANoF system during normal operations. Simulation results reveal that the proposed strategy is effective in avoiding aggregated interference, reducing outage probability, and improving network throughput. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号