首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A facile method is proposed for the synthesis of reduced graphene oxide nanosheets (RGONS) and Au nanoparticle-reduced graphene oxide nanosheet (Au-RGONS) hybrid materials, using graphene oxide (GO) as precursor and sodium citrate as reductant and stabilizer. The resulting RGONS and Au-RGONS hybrid materials were characterized by UV-vis spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, atomic force microscopy, transmission electron microscopy, and X-ray diffraction. It was found that the RGONS and Au-RGONS hybrid materials formed stable colloidal dispersions through hydrogen bonds between the residual oxygen-containing functionalities on the surface of RGONS and the hydroxyl/carboxyl groups of sodium citrate. The electrochemical responses of RGONS and Au-RGONS hybrid material-modified glassy carbon electrodes (GCE) to three kinds of biomolecules were investigated, and all of them showed a remarkable increase in electrochemical performance relative to a bare GCE.   相似文献   

2.
We have demonstrated a facile and efficient strategy for the fabrication of soluble reduced graphene oxide sheets (RGO) and the preparation of titanium oxide (TiO2) nanoparticle-RGO composites using a modified one-step hydrothermal method. It was found that graphene oxide could be easily reduced under solvothermal conditions with ascorbic acid as reductant, with concomitant growth of TiO2 particles on the RGO surface. The TiO2-RGO composite has been thoroughly characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Microscopy techniques (scanning electron microscopy, atomic force microscopy, and transmission electron microscopy) have been employed to probe the morphological characteristics as well as to investigate the exfoliation of RGO sheets. The TiO2-RGO composite exhibited excellent photocatalysis of hydrogen evolution.   相似文献   

3.
We demonstrate an aqueous solution method for the synthesis of a Ag-TiO2-reduced graphene oxide (rGO) hybrid nanostructure (NS) in which the Ag and TiO2 particles are well dispersed on the rGO sheet. The Ag-TiO2-rGO NS was then used as a template to synthesize Pt-TiO2-rGO NS. The resulting hybrid NSs were characterized by transmission electron microscopy (TEM), high-resolution TEM (HRTEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, UV-vis spectroscopy, Raman spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS), and catalytic studies. It was found that TiO2-rGO, Ag-TiO2-rGO and Pt-TiO2-rGO NSs all show catalytic activity for the reduction of p-nitrophenol to p-aminophenol by NaBH4, and that Pt-TiO2-rGO NS exhibits the highest catalytic activity as well as excellent stability and easy recyclability.   相似文献   

4.
We report a simple method to produce graphene nanospheres (GNSs) by annealing graphene oxide (GO) solution at high-temperature with the assistance of sparks induced by the microwave absorption of graphite flakes dispersed in the solution. The GNSs were formed by rolling up of the annealed GO, and the diameters were mostly in the range 300–700 nm. The GNS exhibited a hollow sphere structure surrounded by graphene walls with a basal spacing of 0.34 nm. Raman spectroscopy and X-ray photoelectron spectroscopy of the GNSs confirmed that the GO was efficiently reduced during the fabrication process. The resulting GNSs may open up new opportunities both for fundamental research and applications, and this method may be extended to the synthesis of other nanomaterials and the fabrication of related nanostructures.   相似文献   

5.
TiO2/graphene composite photocatalysts have been prepared by a simple liquid phase deposition method using titanium tetrafluoride and electron beam (EB) irradiation-pretreated graphene as the raw materials. The products were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The effects of varying the synthesis parameters such as graphene content, concentration of titanium tetrafluoride solution and irradiation dose were investigated. It was found that the preparation conditions had a significant effect on the structure and properties of the final products. The irradiated graphene was covered with petal-like anatase TiO2 nanoparticles, which were more uniform and smaller in size than those in products synthesized without EB irradiation-pretreated graphene. The photocatalytic activities of the products were evaluated using the photocatalytic degradation of methyl orange as a probe reaction. The results showed that the products synthesized using EB irradiation-pretreated graphene exhibited higher photocatalytic activities than those using graphene without EB irradiation pretreatment.   相似文献   

6.
The geometric size and distribution of magnetic nanoparticles are critical to the morphology of graphene (GN) nanocomposites, and thus they can affect the capacity and cycling performance when these composites are used as anode materials in lithium-ion batteries (LiBs). In this work, Fe3O4 nanorods were deposited onto fully extended nitrogen-doped GN sheets from a binary precursor in two steps, a hydrothermal process and an annealing process. This route effectively tuned the Fe3O4 nanorod size distribution and prevented their aggregation. The transformation of the binary precursor was characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and transmission electron microscopy (TEM). XPS analysis indicated the presence of N-doped GN sheets, and that the magnetic nanocrystals were anchored and uniformly distributed on the surface of the flattened N-doped GN sheets. As a high performance anode material, the structure was beneficial for electron transport and exchange, resulting in a large reversible capacity of 929 mA·h·g–1, high-rate capability, improved cycling stability, and higher electrical conductivity. Not only does the result provide a strategy for extending GN composites for use as LiB anode materials, but it also offers a route for the preparation of other oxide nanorods from binary precursors.
  相似文献   

7.
We demonstrate a simple and controllable way to synthesize large-area, few-layer graphene on iron substrates by an optimized chemical vapor deposition (CVD) method using a mixture of methane and hydrogen. Based on an analysis of the Fe-C phase diagram, a suitable procedure for the successful synthesis of graphene on Fe surfaces was designed. An appropriate temperature and cooling process were found to be very important in the synthesis of highly crystalline few-layer graphene. Graphene-based field-effect transistor (FET) devices were fabricated using the resulting few-layer graphene, and showed good quality with extracted mobilities of 300–1150 cm2/(V·s).   相似文献   

8.
We analyze the chemical bonding in graphene using a fragmental approach, the adaptive natural density partitioning method, electron sharing indices, and nucleus-independent chemical shift indices. We prove that graphene is aromatic, but its aromaticity is different from the aromaticity in benzene, coronene, or circumcoronene. Aromaticity in graphene is local with two π-electrons delocalized over every hexagon ring. We believe that the chemical bonding picture developed for graphene will be helpful for understanding chemical bonding in defects such as point defects, single-, double-, and multiple vacancies, carbon adatoms, foreign adatoms, substitutional impurities, and new materials that are derivatives of graphene.   相似文献   

9.
We report the facile synthesis of ZnO nanocrystals via a one-step solid state reaction at room temperature and their application as the photoanode in plastic dye-sensitized solar cells (DSCs). ZnO nanoparticles were prepared utilizing zinc acetate dihydrate and sodium hydroxide with a short grinding time and without a sintering process. The as-prepared samples with the polycrystalline hexagonal wurtzite structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The obtained ZnO nanoparticles exhibited high crystallinity even without a high temperature sintering treatment during the preparation process. The effects of compression post-treatment on the photovoltaic performance of DSCs were also investigated using intensity modulated photocurrent spectroscopy (IMPS), incident photo-to-current conversion efficiency (IPCE), and electrochemical impedance spectroscopy (EIS). The results indicate that the improvement of power conversion efficiency after compression post-treatment of ZnO photoelectrode can be attributed to its high photoelectron collection efficiency and effective electron transport. Under the optimized conditions, a full plastic D149-sensitized ZnO solar cell measured under illumination of 100 mW·cm−2 (AM 1.5G) presents an energy conversion efficiency of 3.76% with open-circuit voltage of 0.688 V, short-circuit current density of 8.55 mA·cm−2, and fill factor of 0.64. These results demonstrate that the one-step solid state reaction is a convenient and effective method for the synthesis of ZnO nanocrystals for use in plastic DSCs.   相似文献   

10.
The electronic properties of two-dimensional honeycomb structures of molybdenum disulfide (MoS2) subjected to biaxial strain have been investigated using first-principles calculations based on density functional theory. On applying compressive or tensile bi-axial strain on bi-layer and mono-layer MoS2, the electronic properties are predicted to change from semiconducting to metallic. These changes present very interesting possibilities for engineering the electronic properties of two-dimensional structures of MoS2.   相似文献   

11.
Sandwich structured graphene-wrapped FeS-graphene nanoribbons (G@FeS-GNRs) were developed. In this composite, FeS nanoparticles were sandwiched between graphene and graphene nanoribbons. When used as anodes in lithium ion batteries (LIBs), the G@FeS-GNR composite demonstrated an outstanding electrochemical performance. This composite showed high reversible capacity, good rate performance, and enhanced cycling stability owing to the synergy between the electrically conductive graphene, graphene nanoribbons, and FeS. The design concept developed here opens up a new avenue for constructing anodes with improved electrochemical stability for LIBs.
  相似文献   

12.
Anatase polyhedral materials with a preponderance of exposed {001} facets have been produced using (NH4)2TiF6 and water as raw materials. The crystallographic structure and the growth mechanism of the anatase TiO2 product were investigated systematically by XRD (X-ray diffraction), scanning electron microscopy (SEM), TEM (transmission electron microscope), and ultraviolet (UV) visible and photoluminescence spectroscopy. The products exhibited significantly higher activities than commercial P25 titania nanoparticles in the photocatalytic degradation of methylene blue dye. Moreover, the materials have large particle sizes and are very robust, making them suited for practical uses.   相似文献   

13.
Magnetically recyclable Au/Co/Fe core-shell nanoparticles (NPs) have been successfully synthesized via a one-step in situ procedure. Transmission electron microscope (TEM), energy dispersive X-ray spectroscopic (EDS), and electron energy-loss spectroscopic (EELS) measurements revealed that the trimetallic Au/Co/Fe NPs have a triple-layered core-shell structure composed of a Au core, a Co-rich inter-layer, and a Fe-rich shell. The Au/Co/Fe core-shell NPs exhibit much higher catalytic activities for hydrolytic dehydrogenation of ammonia borane (NH3BH3, AB) than the monometallic (Au, Co, Fe) or bimetallic (AuCo, AuFe, CoFe) counterparts.   相似文献   

14.
Ninghai Su  Miao Liu  Feng Liu 《Nano Research》2011,4(12):1242-1247
Using molecular dynamics (MD) simulations, we have investigated the kinetics of the graphene edge folding process. The lower limit of the energy barrier is found to be ∼380 meV/? (or about 800 meV per edge atom) and ∼50 meV/? (or about 120 meV per edge atom) for folding the edges of intrinsic clean single-layer graphene (SLG) and double-layer graphene (DLG), respectively. However, the edge folding barriers can be substantially reduced by imbalanced chemical adsorption, such as of H atoms, on the two sides of graphene along the edges. Our studies indicate that thermal folding is not feasible at room temperature (RT) for clean SLG and DLG edges and is feasible at high temperature only for DLG edges, whereas chemical folding (with adsorbates) of both SLG and DLG edges can be spontaneous at RT. These findings suggest that the folded edge structures of suspended graphene observed in some experiments are possibly due to the presence of adsorbates at the edges.   相似文献   

15.
Porous and single crystalline platinum (Pt) nanoparticles (NPs) have been successfully synthesized by reduction of H2PtCl6·6H2O and then investigated by optical spectroscopy and transmission electron microscopy. H2PtCl6·6H2O was reduced using ethylene glycol in the presence of polyvinylpyrrolidone under highly acidic conditions (pH < 1) to form single crystalline Pt particles about 5 nm in size. These particles were then stacked via {100} facets, forming 50-nm length porous nanocubes with a mosaic structure. The porous Pt NPs exhibited excellent catalytic properties for methanol oxidation. In particular, the electrochemical surface area was ∼63 m2/g, five times higher than that for non-porous Pt NPs prepared using a conventional method. We suggest that the high catalytic activity of porous Pt NPs is due to a combination of the crystalline structure having exposed {100} facets and a porous morphology.   相似文献   

16.
The development of efficient energy storage devices with high capacity and excellent stability is a demanding necessary to satisfy future societal and environmental needs. A hybrid material composed of low defect density graphene-supported Ni(OH)2 sheets has been fabricated via a soft chemistry route and investigated as an advanced electrochemical pseudocapacitor material. The low defect density graphene effectively prevents the restacking of Ni(OH)2 nanosheets as well as boosting the conductivity of the hybrid electrodes, giving a dramatic rise in capacity performance of the overall system. Moreover, graphene simultaneously acts as both nucleation center and template for the in situ growth of smooth and large scale Ni(OH)2 nanosheets. By virtue of the unique two-dimensional nanostructure of graphene, the as-obtained Ni(OH)2 sheets are closely protected by graphene, effectively suppressing their microstructural degradation during the charge and discharge processes, enabling an enhancement in cycling capability. Electrochemical measurements demonstrated that the specific capacitance of the as-obtained composite is high as 1162.7 F/g at a scan rate of 5 mV/s and 1087.9 F/g at a current density of 1.5 A/g. In addition, there was no marked decrease in capacitance at a current density of 10·A/g after 2000 cycles, suggesting excellent long-term cycling stability.   相似文献   

17.
Polarized light microscopy (PLM) is used to image individual single-walled carbon nanotubes (SWNTs) suspended in air across a slit opening. The imaging contrast relies on the strong optical anisotropy typical of SWNTs. We combine PLM with a tunable light source to enable hyperspectral excitation spectroscopy and nanotube chirality assignment. Comparison with fluorescence microscopy and spectroscopy confirms the assignment made with PLM. This represents a versatile new approach to imaging SWNTs and related structures.   相似文献   

18.
Microscopic features of graphene segregated on Ni films prior to chemical transfer—including atomic structures of monolayers and bilayers, Moiré patterns due to non-AB stacking, as well as wrinkles and ripples caused by strain effects-have been characterized in detail by high-resolution scanning tunneling microscopy (STM). We found that the stacking geometry of the bilayer graphene usually deviates from the traditional Bernal stacking (or so-called AB stacking), resulting in the formation of a variety of Moiré patterns. The relative rotations inside the bilayer were then qualitatively deduced from the relationship between Moiré patterns and carbon lattices. Moreover, we found that typical defects such as wrinkles and ripples tend to evolve around multi-step boundaries of Ni, thus reflecting strong perturbations from substrate corrugations. These investigations of the morphology and the mechanism of formation of wrinkles and ripples are fundamental topics in graphene research. This work is expected to contribute to the exploration of electronic and transport properties of wrinkles and ripples.   相似文献   

19.
We report a voltage generator based on a graphene network (GN). In response to the movement of a droplet of ionic solution over a GN strip, a voltage of several hundred millivolts is observed under ambient conditions. In the voltage-generation process, the unique structure of GN plays an important role in improving the rate of electron transfer. Given their excellent mechanical properties, GNs may find applications for harvesting vibrational energy in various places such as raincoats, umbrellas, windows, and other surfaces that are exposed to rain.
  相似文献   

20.
Metal-organic frameworks (MOFs) and silicon nanowires (SiNWs) have been extensively studied due to their unique properties; MOFs have high porosity and specific surface area with well-defined nanoporous structure, while SiNWs have valuable one-dimensional electronic properties. Integration of the two materials into one composite could synergistically combine the advantages of both materials and lead to new applications. We report the first example of a MOF synthesized on surface-modified SiNWs. The synthesis of polycrystalline MOF-199 (also known as HKUST-1) on SiNWs was performed at room temperature using a step-by-step (SBS) approach, and X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy elemental mapping were used to characterize the material. Matching of the SiNW surface functional groups with the MOF organic linker coordinating groups was found to be critical for the growth. Additionally, the MOF morphology can by tuned by changing the soaking time, synthesis temperature and precursor solution concentration. This SiNW/MOF hybrid structure opens new avenues for rational design of materials with novel functionalities.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号