首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
介绍了一种采用0.35μm CMOS工艺制作的LDO电路。电路采用工作在亚阈值区的跨导放大器使得电路工作在超低静态电流下,因此实现了超低静态功耗和高效率性能。整个电路所占面积约为0.8 mm2,在典型工作状态下电路总的静态电流约为500 n A,最大负载电流为150 m A。电路输入电压为3.3 V~5 V,输出电压为3 V。  相似文献   

2.
基于SOC应用,采用TSMC 0.18μm CMOS工艺,设计实现了一个低电压、高增益的恒跨导轨到轨运算放大器IP核.该运放采用了一倍电流镜跨导恒定方式和新型的共栅频率补偿技术,比传统结构更加简单高效.用Hspice对整个电路进行仿真.在1.8V电源电压、10pF负载电容条件下,其直流开环增益达到103.5dB,相位裕度为60.5度,输入级跨导最大偏差低于3%.  相似文献   

3.
设计一种带有自动增益控制(AGC)的光纤接收跨阻前置放大器(TIA),应用于SDH系统STM-4速率级(622Mbps),采用CSMC 0.6μm CMOS工艺实现。电源电压3.3V,差分输出。仿真结果显示,可允许的信号输入范围较大(-32dBm到 3dBm),小信号输入增益高达86.9dBΩ,相位分裂器的有源电感负载有效提高了电路的带宽约70%,放大器的等效输入电流噪声为4.34pAHz。  相似文献   

4.
提出了一种基于新型电流补偿电流镜的改进型CMOS电流控制电流传输器,电路由电流补偿电流镜和跨导线性环构成。相对于以往提出的电流控制电流传输器,该电路具有更高的电流跟随精度以及Z端输出阻抗。采用SMIC 0.18μm CMOS工艺参数,在±1.2 V的供电电源条件下,用Spectre对电路进行仿真。结果表明:在50μA的偏置电流下,电流的跟随精度为1.004,-3 d B带宽为200 MHz,Z端阻抗为2 MΩ。经验证,该电路可用于设计可调谐连续时间电流模式滤波器。  相似文献   

5.
在数字隔离器系统中,因为存在电路寄生效应和随机噪声,数字信号的波形会发生严重畸变。针对该问题,提出了一种电压—电流模式高速施密特触发器,该电路能有效还原信号的波形。电路主体结构采用电流放大器和跨导运算放大器相结合,在输入高速数据时,电流放大器提供了快速的前馈通路来增加比较器的响应速度,实现施密特触发器的高速翻转。设计采用GF_0.18μm_BCD工艺,在电源电压5 V的条件下,可实现500 MHz高速信号的整形,信号的传输延时为652 ps。  相似文献   

6.
3.3V/0.18μm恒跨导轨对轨CMOS运算放大器的设计   总被引:1,自引:0,他引:1  
基于0.18μm CMOS工艺,设计了一种3.3 V低压轨对轨(Rail-to-Rail)运算放大器。该运算放大器的输入级采用3倍电流镜控制的互补差分对结构,实现了满电源幅度的输入输出和恒输入跨导;输出级采用前馈式AB类输出控制电路,保证了轨对轨的输出摆幅以及较强的驱动能力。仿真结果表明,直流开环增益为120 dB,单位增益带宽为5.98 MHz,相位裕度为66°,功耗为0.18 mW,在整个共模范围内输入级跨导变化率为2.45%。  相似文献   

7.
《电子技术应用》2016,(6):30-33
设计了一种应用于超宽带无线接收机的高线性度宽带可编程增益放大器(PGA),该PGA采用线性度增强型源简并结构的放大器加电阻衰减网络的结构,增益的调节分两步完成,PGA Core实现6dB增益调节步长,电阻衰减网络实现1dB增益调节步长,PGA Core电路采用线性度增强型源简并结构放大器,提高PGA的线性度。PGA采用SMIC 0.18μm混合信号CMOS工艺,1.8 V电源电压供电,仿真结果表明,该PGA增益范围-4~28dB,1dB步进,3dB带宽大于280 MHz,最大增益时输出三阶交调点(OIP3)25.7dBm,噪声系数(NF)22.24dB,总体电路消耗10.4 m A电流,芯片有效面积0.2 mm~2。  相似文献   

8.
基于SMIC 0.18μm CMOS混合信号工艺设计了一种低功耗轨对轨运算放大器,并用Specie仿真器对运放的各种性能参数进行了仿真.运放采用3.3V电源,输入共模电压和输出摆幅均达到了轨对轨,输入级跨导在整个输入共模电压范围内仅变化15%,直流开环增益为99dB,单位增益带宽为3.2MHz,相位裕度为59°(10pF负载电容),功耗为0.55mW.  相似文献   

9.
设计了一种应用于W-CDMA零中频接收机系统的跨导-电容(Gm-C)低通滤波器及其调谐电路。该接收机中的滤波器采用截止频率为2.2 MHz的3阶巴特沃斯滤波器,在10 MHz频率处的阻带衰减达到34 d B。电路采用SMIC 0.18μm CMOS工艺模型,在电源电压为1.8 V时,滤波器的IIP3可达到21.13 d Bm,电路功耗为3.31 m W。同时,该滤波器采用开关电容调谐电路来精确控制滤波器的截止频率,将截止频率的偏差降低到3%以下。  相似文献   

10.
针对无线局域网接收机对低成本和线性度的定制化需求,设计了一款适用于IEEE 802.11 b/g/n/ax标准WLAN接收机的高线性度电流模式混频器;采用零中频接收机架构,电流模式混频器的电路结构主要包括跨导级放大器,混频开关级和跨阻放大器;通过跨导级两种工作状态的转换和跨阻放大器反馈电阻的两种取值变化实现了混频器的四档增益可调;混频开关级选用双平衡无源混频电路以提供良好的线性度;为了解决零中频接收机存在的直流失调问题,加入了一种电流注入式的直流失调校准电路,进一步提高了混频器的线性度;对跨阻放大器中的跨导运算放大器电路进行优化设计以提高其带宽,使跨阻放大器的输入阻抗足够小以保证混频器的线性度;基于180 nm RF CMOS工艺,借助Cadence软件对混频器进行仿真:当本振频率为2.4GHz时,四档增益分别为38dB、32dB、27dB和21dB,中频带宽可达20MHz;噪声系数在高增益的情况下为8.46dB,输入三阶交调点在低增益的情况下可达13.72dBm;仿真结果表明,在较宽的中频带宽下,电流模式混频器取得了良好的线性度性能,满足WLAN接收机的定制化需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号