首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用SiO2纳米图形层作为模板在以蓝宝石为衬底的n-GaN单晶层上制备了InGaN/GaN多量子阱纳米线,并成功实现了其发光二极管器件(LED).场发射扫描电子显微镜(FESEM)的测量结果表明,InGaN/GaN多量子阱纳米线具有光滑的表面形貌和三角形的剖面结构.室温下阴极射线荧光谱(CL)的测试发现了位于461 nm...  相似文献   

2.
The edge-emitting electroluminescence (FL) state of polarization of blue and green InGaN/GaN light-emitting diodes (LEDs) grown in EMCORE’s commercial reactors was studied and compared to theoretical evaluations. Blue (∼475 nm) LEDs exhibit strong EL polarization, up to a 3:1 distinction ratio. Green (∼530 nm) LEDs exhibit smaller ratios of about 1.5:1. Theoretical evaluations for similar InGaN/GaN superlattices predicted a 3:1 ratio between light polarized perpendicular (E⊥c) and light polarized parallel (E‖c) to the c axis. For the blue LEDs, a quantum well-like behavior is suggested because the E⊥c mode dominates the E‖c mode 3:1. In contrast, for the green LEDs, a mixed quantum well (QW)-quantum dot (QD) behavior is proposed, as the ratio of E⊥c to E‖c modes drops to 1.5:1. The EL polarization fringes were also observed, and their occurrence may be attributed to a symmetric waveguide-like behavior of the InGaN/GaN LED structure. A large 40%/50% drop in the surface root mean square (RMS) from atomic force microscopy (AFM) scans on blue/green LEDs with and without EL fringes points out that better surfaces were achieved for the samples exhibiting fringing. At the same time, a 25%/10% increase in the blue/green LED photoluminescence (PL) intensity signal was found for samples displaying EL interference fringes, indicating superior material quality and improved LED structures.  相似文献   

3.
The direction of the piezoelectric field in InGaN/GaN multiple quantum-well (MQW) structures grown by metal-organic vapor deposition (MOCVD) was determined using excitation-power-density variable photoluminescence (PL). By comparing the excitation-power-density dependence of the shift of the PL peak and the change of the full-width at half-maximum (FWHM) of the peak from an InGaN/GaN MQW structure and an InGaN MQW-based light-emitting diode (LED), the piezoelectric field in the InGaN/GaN MQW structures was unambiguously determined to be pointing toward the substrate. This result helps to identify the surface polarity of the LED wafer as Ga-faced.  相似文献   

4.
High-quality InGaN/GaN multiple-quantum well (MQW) light-emitting diode (LED) structures were prepared by a temperature-ramping method during metal-organic chemical-vapor deposition (MOCVD) growth. Two photoluminescence (PL) peaks, one originating from well-sensitive emission and one originating from an InGaN quasi-wetting layer on the GaN-barrier surface, were observed at room temperature (RT). The observation of high-order double-crystal x-ray diffraction (DCXRD) satellite peaks indicates that the interfaces between InGaN-well layers and GaN-barrier layers were not degraded as we increased the growth temperature of the GaN-barrier layers. With a 20-mA and 160-mA current injection, it was found that the output power could reach 2.2 mW and 8.9 mW, respectively. Furthermore, it was found that the reliability of the fabricated green LEDs prepared by temperature ramping was also reasonably good.  相似文献   

5.
MOVPE生长的GaN基蓝色与绿色LED   总被引:1,自引:1,他引:0  
报道用自行研制的LP-MOVPE设备,在蓝宝石(α-Al2O3)衬底上生长出以InGaN为有源区的蓝光和绿光InGaN/AlGsN双异质结构以及InGaN/GaN量子阱结构的LED,其发射波长分别为430-450nm和520-540nm。  相似文献   

6.
InGaN/GaN MQW双波长LED的MOCVD生长   总被引:1,自引:0,他引:1  
利用金属有机物化学气相淀积(MOCVD)系统生长了InGaN/GaN多量子阱双波长发光二极管(LED).发现在20 mA正向注入电流下空穴很难输运过蓝光和绿光量子阱间的垒层,这是混合量子阱有源区获得双波长发光的主要障碍.通过掺入一定量的In来降低蓝光和绿光量子阱之间的垒层的势垒高度,增加注入到离p-GaN层较远的绿光有源区的空穴浓度,从而改变蓝光和绿光发光峰的强度比.研究了蓝光和绿光量子阱间垒层In组分对双波长LED的发光性质的影响.此外,研究了双波长LED发光特性随注入电流的变化.  相似文献   

7.
主要通过光致发光的实验手段,研究分析了在自支撑GaN衬底上生长的InGaN/GaN多量子阱(InGaN/GaN MQW)有源层中的载流子复合机制,实验中发现多量子阱的光致发光光谱中有一个与有源区中的深能级相关的额外的发光峰。在任何温度大功率激发条件下,自由激子的带边复合占主导地位,并且带边复合的强度随温度或激发功率的下降而减弱;在室温以下小功率激发条件下,局域化能级引入的束缚激子复合占主导地位,其复合强度随温度的下降而单调上升,随激发功率的下降而上升。带边复合在样品温度上升或者激发功率变大时发生蓝移,而局域的束缚激子复合辐射的峰值波长,随样品温度和激发功率的变化没有明显变化。  相似文献   

8.
The temperature dependence of performance of InGaN/GaN multiple-quantum-well (MQW) light-emitting diodes (LEDs) with different indium compositions in the MQWs was investigated. With increasing In composition in the MQWs, the optical performance of the LEDs at room temperature was increased due to an increase in the localized energy states caused by In composition fluctuations in MQWs. As the temperature was increased, however, the decrease in output power for LED with a higher In composition in the MQWs was higher than that of LED with a lower In composition in the MQWs. This could be due to the increased nonradiation recombination through the high defect densities in the MQWs resulted from the increased accumulation of strain between InGaN well and GaN barrier.  相似文献   

9.
The In0.05Ga0.95N/GaN, In0.05Ga0.95N/Al0.1Ga0.9N, and In0.05Ga0.95N/Al0.18Ga0.82N multiple-quantum well (MQW) light-emitting diodes (LEDs) were prepared by metal-organic chemical-vapor deposition. (MOCVD). It was found that the 20-mA electroluminescence (EL) intensity of the InGaN/Al0.1Ga0.9N MQW LED was two times larger than that of the InGaN/GaN MQW LED. The larger maximum-output intensity and the fact that maximum-output intensity occurred at a larger injection current suggest that Al0.1Ga0.9N-barrier layers can provide a better carrier confinement and effectively reduce leakage current. In contrast, the EL intensity of the InGaN/Al0.18Ga0.82N MQW LED was smaller because of the relaxation that occurred in the MQW active region of the sample.  相似文献   

10.
InGaN/AlGaN双异质结绿光发光二极管   总被引:1,自引:0,他引:1  
报道了用 LP- MOVPE技术在蓝宝石 ( α- Al2 O3)衬底上生长出以双掺 Zn和 Si的 In Ga N为有源区的绿光 In Ga N/Al Ga N双异质结结构 ,并研制成功发射波长为 52 0— 540 nm的绿光LED.  相似文献   

11.
High-quality InGaN-GaN multiquantum well (MQW) light-emitting diode (LED) structures were prepared by temperature ramping method during metalorganic chemical vapor deposition (MOCVD) growth. It was found that we could reduce the 20-mA forward voltage and increase the output intensity of the nitride-based green LEDs by increasing the growth temperature of GaN barrier layers from 700/spl deg/C to 950/spl deg/C. The 20-mA output power and maximum output power of the nitride-based green LEDs with high temperature GaN barrier layers was found to be 2.2 and 8.9 mW, respectively, which were more than 65% larger than those observed from conventional InGaN-GaN green LEDs. Such an observation could be attributed to the improved crystal quality of GaN barrier layers. The reliability of these LEDs was also found to be reasonably good.  相似文献   

12.
InGaN-AlInGaN multiquantum-well LEDs   总被引:2,自引:0,他引:2  
InGaN-GaN and InGaN-AlInGaN multiquantum-well (MQW) light-emitting diodes (LEDs) were both fabricated and their optical properties were evaluated by photoluminescence (PL) as well as electroluminescence (EL). We found that the PL peak position of the InGaN-AlInGaN MQW occurs at a much lower wavelength than that of the InGaN-GaN MQW. The PL intensity of the InGaN-AlInGaN MQW was also found to be larger. The EL intensity of the InGaN-AlInGaN MQW LED was also found to be larger than that of the InGaN-GaN MQW LED under the same amount of injection current. Furthermore, it was found that EL spectrum of the InGaN-AlInGaN MQW LED is less sensitive to the injection current. These observations all suggest that we can improve the properties of nitride-based LEDs by using AlInGaN as the barrier layer  相似文献   

13.
Zhao  Y. S.  Hibbard  D. L.  Lee  H. P.  Ma  K.  So  W.  Liu  H. 《Journal of Electronic Materials》2003,32(12):1523-1526
The design, fabrication, and performance characteristics of a back-surface distributed Bragg reflector (DBR) enhanced InGaN/GaN light-emitting diode (LED) are described. A wide reflectance bandwidth in the blue and green wavelength regions is obtained using a double quarter-wave stack design composed of TiO2 and SiO2 layers. More than 65% enhancement in extracted light intensity is demonstrated for a blue LED measured at the chip level. Similar improvement in green LED performance is discussed and achieved through simulation. Possible applications of back-surface DBR-enhanced LEDs include surface-mount packages with significantly reduced vertical profiles, resonant cavity LEDs, and superluminescent diodes.  相似文献   

14.
We have investigated the effects of nonradiative recombination centers (NRCs) on the device performance of InGaN/GaN multi-quantum-well (MQW) light-emitting diodes (LEDs) inserting low-temperature n-GaN (LT-GaN) underlying layers. Inserting an LT-GaN underlying layer prior to growing the MQWs is a successful means of separating the induced nonradiative recombination centers because a growth interrupt interface exists between the n-GaN template and the InGaN QW. We found that by introducing this technique would improve the external quantum efficiency of the as-grown conventional LEDs. The electroluminescence relative intensity of a blue LED incorporating a 70-nm-thick LT-GaN was 20.6% higher (at 20 mA current injection) than that of the corresponding as-grown blue LED in the best case.  相似文献   

15.
We have demonstrated the growth of quaternary AIlnGaN compounds at different growth temperatures and pressures with metalorganic chemical vapor deposition (MOCVD). The optical properties of the samples have been investigated by photoluminescence (PL) at different temperatures. The results show that the sample grown at higher temperature (850℃) exhibits the best optical quality for its sharp band edge luminescence and weak yellow luminescence. The AlInGaN exhibited three-dimensional (3D) growth mode at higher pressure. The band edge emission almost disappeared. With the optimization of AlInGaN growth parameters, we replaced the traditional barrier in InGaN/GaN multiple quantum wells (MQWs) with AlInGaN barriers. The peak wavelength for the InGaN/AlInGaN-MQW based light emitting diodes (LEDs) was very stable at various injection current levels because of the polarization-matched InGaN/AlInGaN MQWs.  相似文献   

16.
We present a comparative study on temperature dependence of electroluminescence (EL) of InGaN/GaN multiple-quantum-well (MQW) light-emitting diodes (LEDs) with identical structure but different indium contents in the active region. For the ultraviolet (UV) and blue LEDs, the EL intensity decreases dramatically with decreasing temperature after reaching a maximum at 150 K. The peak energy exhibits a large redshift in the range of 20–50 meV with a decrease of temperature from 200 K to 70 K, accompanying the appearance of longitudinal-optical (LO) phonon replicas broadening the low energy side of the EL spectra. This redshift is explained by carrier relaxation into lower energy states, leading to dominant radiative recombination at localized states. In contrast, the peak energy of the green LED exhibits a minimal temperature-induced shift, and the emission intensity increases monotonically with decreasing temperature down to 5 K. We attribute the different temperature dependences of the EL to different degrees of the localization effects in the MQW regions of the LEDs.  相似文献   

17.
InGaN/GaN多量子阱蓝光LED电学特性研究   总被引:1,自引:0,他引:1  
对不同温度(120~363 K)下InGaN/GaN多量子阱(MQW)结构蓝光发光二极管(LED)的电学特性进行了测试与深入的研究.发现对数坐标下I-V特性曲线斜率随温度变化不大.分别用载流子扩散-复合模型和隧道复合模型对其进行计算,发现室温下其理想因子远大于2,并且随着温度的下降而升高;而隧穿能量参数随温度变化不大.这说明传统的扩散-复合载流子输运模型不再适用于InGaN/GaN MQW蓝光LED.分析指出由于晶格失配以及生长工艺的制约,外延层中具有较高的缺陷密度和界面能级密度,导致其主要输运机制为载流子的隧穿.  相似文献   

18.
采用金属有机物化学气相沉积(MOCVD)技术生长了具有高In组分InGaN阱层的InGaN/GaN多量子阱(MQW)结构,高分辨X射线衍射(HRXRD)ω-2θ扫描拟合得到阱层In含量28%。比较大的表面粗糙度表明有很大的位错密度。室温下光致荧光(PL)研究发现该量子阱发射可见的红橙光,峰位波长在610 nm附近。变温PL(15~300 K)进一步揭示量子阱在低温下有两个发光机制,对应的发射峰波长分别为538 nm和610 nm。由于In分凝和载流子的局域化导致的载流子动力改变,使得量子阱PL发光峰值随温度增加呈明显的"S"变化趋势。  相似文献   

19.
Mg-doped InGaN/GaN p-type short-period superlattices (SPSLs) are developed for hole injection and contact layers of green light-emitting diodes (LEDs). V-defect-related pits, which are commonly found in an InGaN bulk layer, can be eliminated in an InGaN/GaN superlattice with thickness and average composition comparable to those of the bulk InGaN layer. Mg-doped InGaN/GaN SPSLs show significantly improved electrical properties with resistivity as low as ∼0.35 ohm-cm, which is lower than that of GaN:Mg and InGaN:Mg bulk layers grown under optimized growth conditions. Green LEDs employing Mg-doped InGaN/GaN SPSLs for hole injection and contact layers have significantly lower reverse leakage current, which is considered to be attributed to improved surface morphology. The peak electroluminescence intensity of LEDs with a SPSL is compared to that with InGaN:Mg bulk hole injection and contact layers.  相似文献   

20.
InGaN red light emitting diode (LED) is one of the crucial bottlenecks that must be broken through to realize high-resolution full-color mini/micro-LED displays. The efficiency of InGaN LEDs drops rapidly as the emission spectra go from blue/green to red range due to the poor quality of high-indium-content InGaN materials. Here, high-performance InGaN red LEDs on sapphire grown by metal–organic chemical vapor deposition through strain modulation are reported. A composite buffer layer is proposed to increase the surface lattice constant of GaN and hence successfully enhances the indium incorporation efficiency of the following InGaN active layers. Consequently, a high-efficiency InGaN red mini-LED chip (mesa area: 100 × 200 µm2) with a peak wavelength of 629 nm and an external quantum efficiency of 7.4% is realized. Finally, a full-color nitride mini-LED display panel with 74.1% coverage of Rec.2020 color gamut by using the InGaN red mini-LED chips is fabricated. The study signifies the great potentials of full-nitrides high-resolution full-color mini/micro-LED displays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号