首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The detection and segmentation of tumor region in brain image is a critical task due to the similarity between abnormal and normal region. In this article, a computer‐aided automatic detection and segmentation of brain tumor is proposed. The proposed system consists of enhancement, transformation, feature extraction, and classification. The shift‐invariant shearlet transform (SIST) is used to enhance the brain image. Further, nonsubsampled contourlet transform (NSCT) is used as multiresolution transform which transforms the spatial domain enhanced image into multiresolution image. The texture features from grey level co‐occurrence matrix (GLCM), Gabor, and discrete wavelet transform (DWT) are extracted with the approximate subband of the NSCT transformed image. These extracted features are trained and classified into either normal or glioblastoma brain image using feed forward back propagation neural networks. Further, K‐means clustering algorithm is used to segment the tumor region in classified glioblastoma brain image. The proposed method achieves 89.7% of sensitivity, 99.9% of specificity, and 99.8% of accuracy.  相似文献   

2.
The uncontrolled growth of cells in brain regions leads to the tumor regions and these abnormal tumor regions are scanned by magnetic resonance imaging (MRI) technique as an image. This paper proposes random forest classifier based Glioma brain tumor detection and segmentation methodology using feature optimization technique. The texture features are derived from brain MRI image and these derived feature set are now optimized by ant colony optimization algorithm. These optimized set of features are trained and classified using random forest classification method. This classifier classifies the brain MRI image into Glioma or non-Glioma image based on the optimized set of features. Furthermore, energy-based segmentation method is applied on the classified Glioma image for segmenting the tumor regions. The proposed methodology for Glioma brain tumor stated in this paper achieves 97.7% of sensitivity, 96.5% of specificity, and 98.01% of accuracy.  相似文献   

3.
《成像科学杂志》2013,61(7):568-578
Abstract

An automated computerised tomography (CT) and magnetic resonance imaging (MRI) brain images are used to perform an efficient classification. The proposed technique consists of three stages, namely, pre-processing, feature extraction and classification. Initially, pre-processing is performed to remove the noise from the medical MRI images. Then, in the feature extraction stage, the features that are related with MRI and CT images are extracted and these extracted features which are given to the Feed Forward Back-propagation Neural Network (FFBNN) is exploited in order to classify the brain MRI and CT images into two types: normal and abnormal. The FFBNN is well trained by the extracted features and uses the unknown medical brain MRI images for classification in order to achieve better classification performance. The proposed method is validated by various MRI and CT scan images. A classification with an accomplishment of 96% and 70% has been obtained by the proposed FFBNN classifier. This achievement shows the effectiveness of the proposed brain image classification technique when compared with other recent research works.  相似文献   

4.
Brain tumor classification and retrieval system plays an important role in medical field. In this paper, an efficient Glioma Brain Tumor detection and its retrieval system is proposed. The proposed methodology consists of two modules as classification and retrieval. The classification modules are designed using preprocessing, feature extraction and tumor detection techniques using Co‐Active Adaptive Neuro Fuzzy Inference System (CANFIS) classifier. The image enhancement can be achieved using Heuristic histogram equalization technique as preprocessing and further texture features as Local Ternary Pattern (LTP) features and Grey Level Co‐occurrence Matrix (GLCM) features are extracted from the enhanced image. These features are used to classify the brain image into normal and abnormal using CANFIS classifier. The tumor region in abnormal brain image is segmented using normalized graph cut segmentation algorithm. The retrieval module is used to retrieve the similar segmented tumor regions from the dataset for diagnosing the tumor region using Euclidean algorithm. The proposed Glioma Brain tumor classification methodology achieves 97.28% sensitivity, 98.16% specificity and 99.14% accuracy. The proposed retrieval system achieves 97.29% precision and 98.16% recall rate with respect to ground truth images.  相似文献   

5.
Brain tumor and brain stroke are two important causes of death in and around the world. The abnormalities in brain cell leads to brain stroke and obstruction in blood flow to brain cells leads to brain stroke. In this article, a computer aided automatic methodology is proposed to detect and segment ischemic stroke in brain MRI images using Adaptive Neuro Fuzzy Inference (ANFIS) classifier. The proposed method consists of preprocessing, feature extraction and classification. The brain image is enhanced using Heuristic histogram equalization technique. Then, texture and morphological features are extracted from the preprocessed image. These features are optimized using Genetic Algorithm and trained and classified using ANFIS classifier. The performance of the proposed ischemic stroke detection system is analyzed in terms of sensitivity, specificity, accuracy, positive predictive value, negative predictive value, and Mathew's correlation coefficient.  相似文献   

6.
Tumors are formed in brain due to the uncontrolled development of cells. These tumors can be cured if it is timely detected and by proper medication. This article proposes a computer‐aided automatic detection and diagnosis of meningioma brain tumors in brain images using Adaptive Neuro Fuzzy Inference System (ANFIS) classifier. The proposed system consists of feature extraction, classification, and segmentation and diagnosis sections. In this article, Grey level Co‐occurrence Matric (GLCM) and Grid features are extracted from the brain image and these features are classified using ANFIS classifier into normal or abnormal. Then, morphological operations are used to segment the abnormal regions in brain image. Based on the location of these abnormal regions in brain tissues, the segmented tumor regions are diagnosed.  相似文献   

7.
This study proposes an image classification methodology that automatically classifies human brain magnetic resonance (MR) images. The proposed methods contain four main stages: Data acquisition, preprocessing, feature extraction, feature reduction and classification, followed by evaluation. First stage starts by collecting MRI images from Harvard and our constructed Egyptian database. Second stage starts with noise reduction in MR images. Third stage obtains the features related to MRI images, using stationary wavelet transformation. In the fourth stage, the features of MR images have been reduced using principles of component analysis and kernel linear discriminator analysis (KLDA) to the more essential features. In last stage, the classification stage, two classifiers have been developed to classify subjects as normal or abnormal MRI human images. The first classifier is based on K‐Nearest Neighbor (KNN) on Euclidean distance. The second classifier is based on Levenberg‐Marquardt (LM‐ANN). Classification accuracy of 100% for KNN and LM‐ANN classifiers has been obtained. The result shows that the proposed methodologies are robust and effective compared with other recent works.  相似文献   

8.
Classification of brain neoplasm images is one of the most challenging research areas in the field of medical image processing. The main objective of this study is to design a brain neoplasm classification system that can be trained using multiple various sized MR images of different institutions. The proposed method is a generalized classification system; it can be used in a single institute or in a number of institutions at the same time, without any restriction on image size. The generalization and unbiased capability of the proposed method can bring researchers on a single platform to work on some standard forms of computer aided diagnosis system with more efficient diagnostic capabilities. In this study, a suitable size of moveable rectangular window is used between segmentation and feature extraction stages. A semiautomatic, localized region based active contour method is used for segmentation of brain neoplasm region. Discrete wavelet transform for feature extraction, principal component analysis for feature selection and support vector machine is used as classifier. For the first time MR images of 2 sizes and from different institutions are used in training and testing of brain neoplasm classifier. Three glioma grades were classified using 92 MR images. The proposed method achieved the highest accuracy of 88.26%, the highest sensitivity of 92.23% and the maximum specificity of 93.93%. In addition, the proposed method is computationally less complex, requires shorter processing time and is more efficient in terms of storage capacity.  相似文献   

9.
The development of abnormal cells in human brain leads to the formation of tumors. This article proposes an efficient approach for brain tumor detection and segmentation using image fusion and co-active adaptive neuro fuzzy inference system (CANFIS) classification method. The brain MRI images are fused and the dual tree complex wavelet transform is applied on the fused image. Then, the statistical features, local ternary pattern features and gray level co-occurrence matrix features. These extracted features are classified using CANFIS classification approach for the classification of source brain MRI image into either normal or abnormal. Further, morphological operations are applied on the abnormal brain MRI image for segmenting the tumor regions. The proposed methodology is evaluated with respect to the performance metrics sensitivity, specificity, positive predictive value, negative predictive value, tumor segmentation accuracy with detection rate. The proposed image fusion based brain tumor detection and classification methodology stated in this article achieves 96.5% of average sensitivity, 97.7% of average specificity, 87.6% of positive predictive value, 96.6% of negative predictive value, and 98.8% of average accuracy.  相似文献   

10.
This report describes a new quality evaluation method for structural magnetic resonance images (MRI) of the brain. Pixels in MRI images are regarded as regionalized random variables that exhibit distinct and organized geographic patterns. We extract geo-spatial local entropy features and build three separate Gaussian distributed quality models upon them using 250 brain MRI images of different subjects. The MRI images were provided by Alzheimer's disease neuroimaging initiative (ADNI). Image quality of a test image is predicted in a three-step process. In the first step, three separate geo-spatial feature vectors are extracted. The second step standardizes each quality model using corresponding geo-spatial feature vector extracted from the test image. The third step computes image quality by transforming the standardized score to probability. The proposed method was evaluated on images without perceived distortion and images degraded by different levels of motion blur and Rician noise as well as images with different configurations of bias fields. Based on the performance evaluation, our proposed method will be suitable for use in the field of clinical research where quality evaluation is required for the brain MRI images acquired from different MRI scanners and different clinical trial sites before they are fed into automated image processing and image analysis systems.  相似文献   

11.
The abrupt changes in brain cells due to the environmental effects or genetic disorders leads to form the abnormal lesions in brain. These abnormal lesions are combined as mass and known as tumor. The detection of these tumor cells in brain image is a complex task due to the similarities between normal cells and tumor cells. In this paper, an automated brain tumor detection and segmentation methodology is proposed. The proposed method consists of feature extraction, classification and segmentation. In this paper, Grey Level Co‐Occurrence Matrix (GLCM), Discrete Wavelet Transform (DWT) and Law's texture features are used as features. These features are fed to Adaptive Neuro Fuzzy Inference System (ANFIS) classifier as input pattern, which classifies the brain image. Morphological operations are now applied on the classified abnormal brain image to segment the tumor regions. The proposed system achieves 95.07% of sensitivity, 99.84% of specificity and 99.80% of accuracy for tumor segmentation.  相似文献   

12.
The present article proposes a novel computer‐aided diagnosis (CAD) technique for the classification of the magnetic resonance brain images. The current method adopt color converted hybrid clustering segmentation algorithm with hybrid feature selection approach based on IGSFFS (Information gain and Sequential Forward Floating Search) and Multi‐Class Support Vector Machine (MC‐SVM) classifier technique to segregate the magnetic resonance brain images into three categories namely normal, benign and malignant. The proposed hybrid evolutionary segmentation algorithm which is the combination of WFF(weighted firefly) and K‐means algorithm called WFF‐K‐means and modified cuckoo search (MCS) and K‐means algorithm called MCS‐K‐means, which can find better cluster partition in brain tumor datasets and also overcome local optima problems in K‐means clustering algorithm. The experimental results show that the performance of the proposed algorithm is better than other algorithms such as PSO‐K‐means, color converted K‐means, FCM and other traditional approaches. The multiple feature set comprises color, texture and shape features derived from the segmented image. These features are then fed into a MC‐SVM classifier with hybrid feature selection algorithm, trained with data labeled by experts, enabling the detection of brain images at high accuracy levels. The performance of the method is evaluated using classification accuracy, sensitivity, specificity, and receiver operating characteristic (ROC) curves. The proposed method provides highest classification accuracy of greater than 98% with high sensitivity and specificity rates of greater than 95% for the proposed diagnostic model and this shows the promise of the approach. © 2015 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 25, 226–244, 2015  相似文献   

13.
In this article, a novel brain image enhancement approach based on nonsubsampled contourlet transform (NSCT) is proposed. First, the image is decomposed into a low‐frequency component and several high‐frequency components by the NSCT; Second, the gamma correction is applied to deal with the low‐frequency sub‐band coefficients, and the adaptive threshold is used to remove the noise of the high‐frequency sub‐bands coefficients; Third, the inverse nonsubsampled contourlet transform is adopted to reconstruct the processed coefficients; Finally, the unsharp filter is used to enhance the reconstructed image. The experimental results demonstrate that the performance of the proposed method is superior to the state‐of‐the‐art algorithms in terms of brain image enhancement.  相似文献   

14.
Magnetic resonance image (MRI) segmentation refers to a process of assigning labels to set of pixels or multiple regions. It plays a major role in the field of biomedical applications as it is widely used by the radiologists to segment the medical images input into meaningful regions. In recent years, various brain tumor detection techniques are presented in the literature. In this article, we have developed an approach to brain tumor detection and severity analysis is done using the various measures. The proposed approach comprises of preprocessing, segmentation, feature extraction, and classification. In preprocessing steps, we need to perform skull stripping and then, anisotropic filtering is applied to make image suitable for extracting features. In feature extraction, we have modified the multi‐texton histogram (MTH) technique to improve the feature extraction. In the classification stage, the hybrid kernel is designed and applied to training of support vector machine to perform automatic detection of tumor region in MRI images. For comparison analysis, our proposed approach is compared with the existing works using K‐cross fold validation method. From the results, we can conclude that the modified multi‐texton histogram with non‐linear kernels has shown the accuracy of 86% but the MTH with non‐linear kernels shows the accuracy of 83.8%.  相似文献   

15.
Abnormal growth of cells in brain leads to the formation of tumors, which are categorized into benign and malignant. In this article, Co‐Active Adaptive Neuro Fuzzy Inference System (CANFIS) classification based brain tumor detection and its grading system is proposed. It has two phases as brain tumor segmentation and brain tissue segmentation. In brain tumor segmentation, CANFIS classifier is used to classify the test brain image into benign or malignant. Then, morphological operations are applied over the malignant image in order to segment the tumor regions in brain image. The K‐means classifier is used to classify the brain tissues into Grey Matter (GM), White Matter (WM) and Cerebro Spinal Fluid (CSF) regions as three different classes. Next, the segmented tumor is graded as mild, moderate or severe based on the presence of segmented tumor region in brain tissues.  相似文献   

16.
Glioma is the severe type of brain tumor which leads to immediate death for the case high‐grade Glioma. The Glioma tumor patient in case of low grade can extend their life period if tumor is timely detected and providing proper surgery. In this article, a computer‐aided fully automated Glioma brain tumor detection and segmentation system is proposed using Adaptive Neuro Fuzzy Inference System (ANFIS) classifier based Graph cut approach. Initially, orientation analysis is performed on the brain image to obtain the edge enhanced abnormal regions in the brain. Then, features are extracted from the orientation enhanced image and these features are trained and classified using ANFIS classifier to classify the test brain image into either normal or abnormal. Normalized Graph cur segmentation methodology is applied on the classified abnormal brain image to segment the tumor region. The proposed Glioma tumor segmentation method is validated using the metric parameters as sensitivity, specificity, accuracy and dice similarity coefficient.  相似文献   

17.
At present, digital image processing plays a vital role in medical imaging areas and specifically in magnetic resonance imaging (MRI) of brain images such as axial and coronal sections. This article mainly focused on the MRI brain images. The existing methods such as total variation (MC), parallel MRI, modified pyramidal dual-tree direction filter, adaptive dictionary selection algorithm, classifier methods, and fuzzy clustering techniques are poor in image eminence and precision. Thus, this article presents a novel approach consisting of denoising followed by segmentation. The objective of these proposed methods was visual eminence improvement of medical images to examine tumor extent using an adaptive partial differential equation (APDE)-based analysis with soft threshold function in denoising. The fourth order, nonlinear APDE was used to denoise the image depending on gradient and Laplacian operators associated with the new adaptive Haar-type wavelet transform. A second approach was the new convergent K-means clustering for segmentation. The convergent K-means procedure diminishes the summation of the squared deviations of structures in a cluster from the center. The significance of these proposed methods was to compute their performances in terms of mean squared error, peak signal-to-noise ratio, structure similarity, segmentation accuracy, false hit, missed-term, and elapsed time. The results were analyzed with the MATLAB software.  相似文献   

18.
The abnormal development of cells in brain leads to the formation of tumors in brain. In this article, image fusion based brain tumor detection and segmentation methodology is proposed using convolutional neural networks (CNN). This proposed methodology consists of image fusion, feature extraction, classification, and segmentation. Discrete wavelet transform (DWT) is used for image fusion and enhanced brain image is obtained by fusing the coefficients of the DWT transform. Further, Grey Level Co‐occurrence Matrix features are extracted and fed to the CNN classifier for glioma image classifications. Then, morphological operations with closing and opening functions are used to segment the tumor region in classified glioma brain image.  相似文献   

19.
Lung cancer is a critical disease with growing death rate, hence, the faster identification and treatment of lung cancer is essential. In medical image processing, the traditional methods like support vector machine, relevance vector machine for classifying cancer tissues are less sensitive to false data and required optimal improvement in classification accuracy. The proposed system of accurate lung cancer classification is obtained by a hybrid fuzzy relevance vector machine (FRVM) classifier with correlation negation ant colony optimization (CNACO) algorithm. This system provides enhanced accuracy and sensitivity by implementing two stages of feature extraction, image thresholding, and tumor segmentation, with a novel feature selection and tumor classification algorithm. The best features are selected by the proposed CNACO algorithm. The selected features are labeled and classified by FRVM classifier. The proposed classification scheme is validated on lung image database consortium and image database resource initiative public database and obtained accuracy of about 98.75%.  相似文献   

20.
针对基本轮廓波变换纹理检索系统检索率较低的问题,提出了一种无下采样轮廓波变换(NSCT)纹理图像检索系统.该系统采用的轮廓波变换由无下采样拉普拉斯金字塔级联无下采样方向滤波器构成,特征向量采用子带系数的能量和标准偏差连接而成;以Canberra距离为相似度度量标准.比较了基于同样架构的基本轮廓波变换和NSCT纹理检索系统的性能.实验结果表明:在特征向量长度,检索时间、所需存储空间基本相同的情况下,NSCT检索系统比基本轮廓波变换检索系统具有更高的检索率;NSCT分解结构参数以及图像类型对于平均检索率也有较大的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号